Solution

It is easy to remark that after removing the left part of the network, shown in Fig. 4 with the dotted square, then we receive a network that is identical with the initial network (it is result of the fact that the network is infinite).

Fig. 4
Thus, we may use the equivalence shown graphically in Fig. 5.

Fig. 5
Algebraically this equivalence can be written as

$$
R_{A B}=r+\frac{1}{\frac{1}{r}+\frac{1}{R_{A B}}} .
$$

Thus

$$
R_{A B}^{2}-r R_{A B}-r^{2}=0 .
$$

This equation has two solutions:

$$
R_{A B}=\frac{1}{2}(1 \pm \sqrt{5}) r .
$$

The solution corresponding to "-" in the above formula is negative, while resistance must be positive. So, we reject it. Finally we receive

$$
R_{A B}=\frac{1}{2}(1+\sqrt{5}) r .
$$

