Solution

If the cord is stressed the cylinder and the block are moving with the same acceleration a. Let F be the tension in the cord, S the frictional force between the cylinder and the inclined plane (Fig. 2). The angular acceleration of the cylinder is a / r. The net force causing the acceleration of the block:

$$
m_{2} a=m_{2} g \sin \alpha-\mu m_{2} g \cos \alpha+F,
$$

and the net force causing the acceleration of the cylinder:

$$
m_{1} a=m_{1} g \sin \alpha-S-F .
$$

The equation of motion for the rotation of the cylinder:

$$
S r=\frac{a}{r} \cdot I .
$$

(I is the moment of inertia of the cylinder, $S \cdot r$ is the torque of the frictional force.)
Solving the system of equations we get:

$$
\begin{align*}
& a=g \cdot \frac{\left(m_{1}+m_{2}\right) \sin \alpha-\mu m_{2} \cos \alpha}{m_{1}+m_{2}+\frac{I}{r^{2}}}, \tag{1}\\
& S=\frac{I}{r^{2}} \cdot g \cdot \frac{\left(m_{1}+m_{2}\right) \sin \alpha-\mu m_{2} \cos \alpha}{m_{1}+m_{2}+\frac{I}{r^{2}}}, \tag{2}\\
& F=m_{2} g \cdot \frac{\mu\left(m_{1}+\frac{I}{r^{2}}\right) \cos \alpha-\frac{I \sin \alpha}{r^{2}}}{m_{1}+m_{2}+\frac{I}{r^{2}}} . \tag{3}
\end{align*}
$$

The moment of inertia of a solid cylinder is $I=\frac{m_{1} r^{2}}{2}$. Using the given numerical values:

$$
\begin{aligned}
& a=g \cdot \frac{\left(m_{1}+m_{2}\right) \sin \alpha-\mu m_{2} \cos \alpha}{1.5 m_{1}+m_{2}}=0.3317 g=\mathbf{3 . 2 5} \mathbf{~ m} / \mathbf{s}^{2}, \\
& S=\frac{m_{1} g}{2} \cdot \frac{\left(m_{1}+m_{2}\right) \sin \alpha-\mu m_{2} \cos \alpha}{1.5 m_{1}+m_{2}}=\mathbf{1 3 . 0 1} \mathbf{N}, \\
& F=m_{2} g \cdot \frac{(1.5 \mu \cos \alpha-0.5 \sin \alpha) m_{1}}{1.5 m_{1}+m_{2}}=\mathbf{0 . 1 9 2} \mathbf{N} .
\end{aligned}
$$

Discussion (See Fig. 3.)

The condition for the system to start moving is $a>0$. Inserting $a=0$ into (1) we obtain the limit for angle α_{1} :

$$
\tan \alpha_{1}=\mu \cdot \frac{m_{2}}{m_{1}+m_{2}}=\frac{\mu}{3}=0.0667, \quad \alpha_{1}=3.81^{\circ} .
$$

For the cylinder separately $\alpha_{1}=0$, and for the block separately $\alpha_{1}=\tan ^{-1} \mu=11.31^{\circ}$.

If the cord is not stretched the bodies move separately. We obtain the limit by inserting $F=0$ into (3):

$$
\tan \alpha_{2}=\mu \cdot\left(1+\frac{m_{1} r^{2}}{I}\right)=3 \mu=0.6, \quad \alpha_{2}=30.96^{\circ} .
$$

The condition for the cylinder to slip is that the value of S (calculated from (2) taking the same coefficient of friction) exceeds the value of $\mu m_{1} g \cos \alpha$. This gives the same value for α_{3} as we had for α_{2}. The acceleration of the centers of the cylinder and the block is the same: $g(\sin \alpha-\mu \cos \alpha)$, the frictional force at the bottom of the cylinder is $\mu m_{1} g \cos \alpha$, the peripheral acceleration of the cylinder is $\mu \cdot \frac{m_{1} r^{2}}{I} \cdot g \cos \alpha$.

Figure 3

