Solution

If the volume at temperature t_{1} is V_{1}, then the volume at temperature $0^{\circ} \mathrm{C}$ is $V_{10}=V_{1} /\left(1+\beta t_{1}\right)$. In the same way if the volume at t_{2} temperature is V_{2}, at $0^{\circ} \mathrm{C}$ we have $V_{20}=V_{2} /\left(1+\beta t_{2}\right)$. Furthermore if the density of the liquid at $0^{\circ} \mathrm{C}$ is d, then the masses are $m_{1}=V_{10} d$ and $m_{2}=V_{20} d$, respectively. After mixing the liquids the temperature is

$$
t=\frac{m_{1} t_{1}+m_{2} t_{2}}{m_{1}+m_{2}} .
$$

The volumes at this temperature are $V_{10}(1+\beta t)$ and $V_{20}(1+\beta t)$.
The sum of the volumes after mixing:

$$
\begin{aligned}
& V_{10}(1+\beta t)+V_{20}(1+\beta t)=V_{10}+V_{20}+\beta\left(V_{10}+V_{20}\right) t= \\
& =V_{10}+V_{20}+\beta \cdot \frac{m_{1}+m_{2}}{d} \cdot \frac{m_{1} t_{1}+m_{2} t_{2}}{m_{1}+m_{2}}= \\
& =V_{10}+V_{20}+\beta\left(\frac{m_{1} t_{1}}{d}+\frac{m_{2} t_{2}}{d}\right)=V_{10}+\beta V_{10} t_{1}+V_{20}+\beta V_{20} t_{2}= \\
& =V_{10}\left(1+\beta t_{1}\right)+V_{20}\left(1+\beta t_{2}\right)=V_{1}+V_{2}
\end{aligned}
$$

The sum of the volumes is constant. In our case it is $410 \mathrm{~cm}^{3}$. The result is valid for any number of quantities of toluene, as the mixing can be done successively adding always one more glass of liquid to the mixture.

