Solution

Let us use angle φ to describe the position of the rays in the glass (Fig. 5). According to the law of refraction $\sin 45^{\circ} / \sin \beta=\sqrt{2}, \sin \beta=0.5, \beta=30^{\circ}$. The refracted angle is 30° for all of the incoming rays. We have to investigate what happens if φ changes from 0° to 180°.

It is easy to see that φ can not be less than $60^{\circ}\left(A O B \angle=60^{\circ}\right)$. The critical angle is given by $\sin \beta_{\text {crit }}=1 / n=\sqrt{2} / 2$; hence $\beta_{\text {crit }}=45^{\circ}$. In the case of total internal reflection $A C O \angle=45^{\circ}$, hence $\varphi=180^{\circ}-60^{\circ}-45^{\circ}=75^{\circ}$. If φ is more than 75° the rays can emerge the cylinder. Increasing the angle we reach the critical angle again if $O E D \angle=45^{\circ}$. Thus the rays are leaving the glass cylinder if:

$$
75^{\circ}<\varphi<165^{\circ},
$$

CE, arc of the emerging rays, subtends a central angle of 90°.

