
Solution:
Case 1. The force ~F has so big magnitude that the carts A and B remain
at the rest with respect to the cart C, i.e. they are moving with the same
acceleration as the cart C is. Let ~G1, ~T1 and ~T2 denote forces acting on
particular carts as shown in the Figure 2 and let us write the equations of
motion for the carts A and B and also for whole mechanical system. Note
that certain internal forces (viz. normal reactions) are not shown.
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Figure 2:

The cart B is moving in the coordinate system Oxy with an acceleration
ax. The only force acting on the cart B is the force ~T2, thus

T2 = m2 ax . (1)

Since ~T1 and ~T2 denote tensions in the same cord, their magnitudes satisfy

T1 = T2 .

The forces ~T1 and ~G1 act on the cart A in the direction of the y-axis.
Since, according to condition 1, the carts A and B are at rest with respect
to the cart C, the acceleration in the direction of the y-axis equals to zero,
ay = 0, which yields

T1 −m1 g = 0 .

Consequently
T2 = m1 g . (2)

So the motion of the whole mechanical system is described by the equation

F = (m1 + m2 + m3) ax , (3)
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because forces between the carts A and C and also between the carts B
and C are internal forces with respect to the system of all three bodies. Let
us remark here that also the tension ~T2 is the internal force with respect to
the system of all bodies, as can be easily seen from the analysis of forces
acting on the pulley. From equations (1) and (2) we obtain

ax =
m1

m2

g .

Substituting the last result to (3) we arrive at

F = (m1 + m2 + m3)
m1

m2

g .

Numerical solution:

T2 = T1 = 0.3 · 9.81 N = 2.94 N ,

F = 2 · 3

2
· 9.81 N = 29.4 N .

Case 2. If the cart C is immovable then the cart A moves with an accelera-
tion ay and the cart B with an acceleration ax. Since the cord is inextensible
(i.e. it cannot lengthen), the equality

ax = −ay = a

holds true. Then the equations of motion for the carts A, respectively B,
can be written in following form

T1 = G1 −m1 a , (4)

T2 = m2 a . (5)

The magnitudes of the tensions in the cord again satisfy

T1 = T2 . (6)

The equalities (4), (5) and (6) immediately yield

(m1 + m2) a = m1 g .
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Using the last result we can calculate

a = ax = −ay =
m1

m1 + m2

g ,

T2 = T1 =
m2m1

m1 + m2

g .

Numerical results:

a = ax =
3

5
· 9.81 m s−2 = 5.89 m s−2 ,

T1 = T2 = 1.18 N .

Problem 2. Water of mass m2 is contained in a copper calorimeter of
mass m1. Their common temperature is t2. A piece of ice of mass m3 and
temperature t3 < 0 oC is dropped into the calorimeter.

a) Determine the temperature and masses of water and ice in the equilib-
rium state for general values of m1, m2, m3, t2 and t3. Write equilibrium
equations for all possible processes which have to be considered.

b) Find the final temperature and final masses of water and ice for m1 =
1.00 kg, m2 = 1.00 kg, m3 = 2.00 kg, t2 = 10 oC, t3 = −20 oC.

Neglect the energy losses, assume the normal barometric pressure. Specific
heat of copper is c1 = 0.1 kcal/kg·oC, specific heat of water c2 = 1 kcal/kg·oC,
specific heat of ice c3 = 0.492 kcal/kg·oC, latent heat of fusion of ice l =
78, 7 kcal/kg. Take 1 cal = 4.2 J.

Solution:
We use the following notation:

t temperature of the final equilibrium state,
t0 = 0 oC the melting point of ice under normal pressure conditions,

M2 final mass of water,
M3 final mass of ice,

m′
2 ≤ m2 mass of water, which freezes to ice,

m′
3 ≤ m3 mass of ice, which melts to water.

a) Generally, four possible processes and corresponding equilibrium states
can occur:
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