Problem 2. Water of mass m_2 is contained in a copper calorimeter of mass m_1 . Their common temperature is t_2 . A piece of ice of mass m_3 and temperature $t_3 < 0$ °C is dropped into the calorimeter.

- a) Determine the temperature and masses of water and ice in the equilibrium state for general values of m_1, m_2, m_3, t_2 and t_3 . Write equilibrium equations for all possible processes which have to be considered.
- b) Find the final temperature and final masses of water and ice for $m_1 = 1.00 \text{ kg}$, $m_2 = 1.00 \text{ kg}$, $m_3 = 2.00 \text{ kg}$, $t_2 = 10 \text{ °C}$, $t_3 = -20 \text{ °C}$.

Neglect the energy losses, assume the normal barometric pressure. Specific heat of copper is $c_1 = 0.1 \text{ kcal/kg} \cdot ^{\circ}\text{C}$, specific heat of water $c_2 = 1 \text{ kcal/kg} \cdot ^{\circ}\text{C}$, specific heat of ice $c_3 = 0.492 \text{ kcal/kg} \cdot ^{\circ}\text{C}$, latent heat of fusion of ice l = 78,7 kcal/kg. Take 1 cal = 4.2 J.

Solution