Problem 2. Water of mass m_{2} is contained in a copper calorimeter of mass m_{1}. Their common temperature is t_{2}. A piece of ice of mass m_{3} and temperature $t_{3}<0^{\circ} \mathrm{C}$ is dropped into the calorimeter.
a) Determine the temperature and masses of water and ice in the equilibrium state for general values of $m_{1}, m_{2}, m_{3}, t_{2}$ and t_{3}. Write equilibrium equations for all possible processes which have to be considered.
b) Find the final temperature and final masses of water and ice for $m_{1}=$ $1.00 \mathrm{~kg}, m_{2}=1.00 \mathrm{~kg}, m_{3}=2.00 \mathrm{~kg}, t_{2}=10^{\circ} \mathrm{C}, t_{3}=-20^{\circ} \mathrm{C}$.

Neglect the energy losses, assume the normal barometric pressure. Specific heat of copper is $c_{1}=0.1 \mathrm{kcal} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$, specific heat of water $c_{2}=1 \mathrm{kcal} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$, specific heat of ice $c_{3}=0.492 \mathrm{kcal} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$, latent heat of fusion of ice $l=$ $78,7 \mathrm{kcal} / \mathrm{kg}$. Take $1 \mathrm{cal}=4.2 \mathrm{~J}$.

