Problem 3. A small charged ball of mass m and charge q is suspended from the highest point of a ring of radius R by means of an insulating cord of negligible mass. The ring is made of a rigid wire of negligible cross section and lies in a vertical plane. On the ring there is uniformly distributed charge Q of the same sign as q. Determine the length l of the cord so as the equilibrium position of the ball lies on the symmetry axis perpendicular to the plane of the ring.

Find first the general solution a then for particular values $Q=q=$ $9.0 \cdot 10^{-8} \mathrm{C}, R=5 \mathrm{~cm}, m=1.0 \mathrm{~g}, \varepsilon_{0}=8.9 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}$.

