Solution:

In equilibrium, the cord is stretched in the direction of resultant force of $\vec{G}=$ $m \vec{g}$ and $\vec{F}=q \vec{E}$, where \vec{E} stands for the electric field strength of the ring on the axis in distance x from the plane of the ring, see Figure 3. Using the triangle similarity, one can write

$$
\begin{equation*}
\frac{x}{R}=\frac{E q}{m g} . \tag{11}
\end{equation*}
$$

Figure 3:

For the calculation of the electric field strength let us divide the ring to n identical parts, so as every part carries the charge Q / n. The electric field strength magnitude of one part of the ring is given by

$$
\Delta E=\frac{Q}{4 \pi \varepsilon_{0} l^{2} n} .
$$

Figure 4:

This electric field strength can be decomposed into the component in the direction of the x-axis and the one perpendicular to the x-axis, see Figure 4. Magnitudes of both components obey

$$
\begin{aligned}
& \Delta E_{x}=\Delta E \cos \alpha=\frac{\Delta E x}{l} \\
& \Delta E_{\perp}=\Delta E \sin \alpha
\end{aligned}
$$

It follows from the symmetry, that for every part of the ring there exists another one having the component $\Delta \overrightarrow{E_{\perp}}$ of the same magnitude, but however oppositely oriented. Hence, components perpendicular to the axis cancel each other and resultant electric field strength has the magnitude

$$
\begin{equation*}
E=E_{x}=n \Delta E_{x}=\frac{Q x}{4 \pi \varepsilon_{0} l^{3}} \tag{12}
\end{equation*}
$$

Substituting (12) into (11) we obtain for the cord length

$$
l=\sqrt[3]{\frac{Q q R}{4 \pi \varepsilon_{0} m g}}
$$

Numerically

$$
l=\sqrt[3]{\frac{9.0 \cdot 10^{-8} \cdot 9.0 \cdot 10^{-8} \cdot 5.0 \cdot 10^{-2}}{4 \pi \cdot 8.9 \cdot 10^{-12} \cdot 10^{-3} \cdot 9.8}} \mathrm{~m}=7.2 \cdot 10^{-2} \mathrm{~m}
$$

