Solution:

Condition for the maximum reinforcement can be written as

$$
2 d n-\frac{\lambda_{k}}{2}=k \lambda_{k}, \text { for } k=0,1,2, \ldots
$$

i.e.

$$
\begin{equation*}
2 d n=(2 k+1) \frac{\lambda_{k}}{2} \tag{13}
\end{equation*}
$$

with d being thickness of the layer, n the refractive index and k maximum order. Let us denote $\lambda^{\prime}=1150 \mathrm{~nm}$. Since for $\lambda=400 \mathrm{~nm}$ the condition for maximum is satisfied by the assumption, let us denote $\lambda_{p}=400 \mathrm{~nm}$, where p is an unknown integer identifying the maximum order, for which

$$
\begin{equation*}
\lambda_{p}(2 p+1)=4 d n \tag{14}
\end{equation*}
$$

holds true. The equation (13) yields that for fixed d the wavelength λ_{k} increases with decreasing maximum order k and vise versa. According to the
assumption,

$$
\lambda_{p-1}<\lambda^{\prime}<\lambda_{p-2}
$$

i.e.

$$
\frac{4 d n}{2(p-1)+1}<\lambda^{\prime}<\frac{4 d n}{2(p-2)+1} .
$$

Substituting to the last inequalities for $4 d n$ using (14) one gets

$$
\frac{\lambda_{p}(2 p+1)}{2(p-1)+1}<\lambda^{\prime}<\frac{\lambda_{p}(2 p+1)}{2(p-2)+1} .
$$

Let us first investigate the first inequality, straightforward calculations give us gradually

$$
\begin{align*}
& \quad \lambda_{p}(2 p+1)<\lambda^{\prime}(2 p-1), \quad 2 p\left(\lambda^{\prime}-\lambda_{p}\right)>\lambda^{\prime}+\lambda_{p}, \\
& \text { i.e. } \\
& \qquad p>\frac{1}{2} \frac{\lambda^{\prime}+\lambda_{p}}{\lambda^{\prime}-\lambda_{p}}=\frac{1}{2} \frac{1150+400}{1150-400}=1 . \ldots \tag{15}
\end{align*}
$$

Similarly, from the second inequality we have

$$
\lambda_{p}(2 p+1)>\lambda^{\prime}(2 p-3), \quad 2 p\left(\lambda^{\prime}-\lambda_{p}\right)<3 \lambda^{\prime}+\lambda_{p}
$$

i.e.

$$
\begin{equation*}
p<\frac{1}{2} \frac{3 \lambda^{\prime}+\lambda_{p}}{\lambda^{\prime}-\lambda_{p}}=\frac{1}{2} \frac{3 \cdot 1150+400}{1150-400}=2 \ldots \tag{16}
\end{equation*}
$$

The only integer p satisfying both (15) and (16) is $p=2$.
Let us now find the thickness d of the air layer:

$$
d=\frac{\lambda_{p}}{4}(2 p+1)=\frac{400}{4}(2 \cdot 2+1) \mathrm{nm}=500 \mathrm{~nm}
$$

Substituting d to the equation (13) we can calculate λ_{p-1}, i.e. λ_{1} :

$$
\lambda_{1}=\frac{4 d n}{2(p-1)+1}=\frac{4 d n}{2 p-1} .
$$

Introducing the particular values we obtain

$$
\lambda_{1}=\frac{4 \cdot 500 \cdot 1}{2 \cdot 2-1} \mathrm{~nm}=666.7 \mathrm{~nm}
$$

Finally, let us determine temperature growth Δt. Generally, $\Delta l=\alpha l \Delta t$ holds true. Denoting the cube edge by h we arrive at $d=\alpha h \Delta t$. Hence

$$
\Delta t=\frac{d}{\alpha h}=\frac{5 \cdot 10^{-7}}{8 \cdot 10^{-6} \cdot 2 \cdot 10^{-2}}{ }^{\circ} \mathrm{C}=3.1^{\circ} \mathrm{C} .
$$

