Question 1.

The blocks slide relative to the prism with accelerations \mathbf{a}_{1} and \mathbf{a}_{2}, which are parallel to its sides and have the same magnitude a (see Fig. 1.1). The blocks move relative to the earth with accelerations:

$$
\begin{align*}
& \mathbf{w}_{1}=\mathbf{a}_{1}+\mathbf{a}_{0} ; \tag{1.1}\\
& \mathbf{w}_{2}=\mathbf{a}_{2}+\mathbf{a}_{0} . \tag{1.2}
\end{align*}
$$

Now we project \mathbf{w}_{1} and \mathbf{w}_{2} along the x - and y-axes:

$$
\begin{align*}
& w_{1 x}=a \cos \alpha_{1}-a_{0} ; \tag{1.3}\\
& w_{1 y}=a \sin \alpha_{1} ; \tag{1.4}\\
& w_{2 x}=a \cos \alpha_{2}-a_{0} ; \tag{1.5}\\
& w_{2 y}=-a \sin \alpha_{2} . \tag{1.6}
\end{align*}
$$

Fig. 1.1

The equations of motion for the blocks and for the prism have the following vector forms (see Fig. 1.2):

$$
\begin{align*}
& m_{1} \mathbf{w}_{1}=m_{1} \mathbf{g}+\mathbf{R}_{1}+\mathbf{T}_{1} \tag{1.7}\\
& m_{2} \mathbf{w}_{2}=m_{2} \mathbf{g}+\mathbf{R}_{2}+\mathbf{T}_{2} \tag{1.8}\\
& M \mathbf{a}_{0}=M \mathbf{g}-\mathbf{R}_{1}-\mathbf{R}_{2}+\mathbf{R}-\mathbf{T}_{1}-\mathbf{T}_{2} . \tag{1.9}
\end{align*}
$$

Fig. 1.2
The forces of tension \mathbf{T}_{1} and \mathbf{T}_{2} at the ends of the thread are of the same magnitude T since the masses of the thread and that of the pulley are negligible. Note that in equation (1.9) we account for the net force $-\left(\mathbf{T}_{1}+\mathbf{T}_{2}\right)$, which the bended thread exerts on the prism through the pulley. The equations of motion result in a system of six scalar equations when projected along x and y :

$$
\begin{align*}
& m_{1} a \cos \alpha_{1}-m_{1} a_{0}=T \cos \alpha_{1}-R_{1} \sin \alpha_{1} ; \tag{1.10}\\
& m_{1} a \sin \alpha_{1}=T \sin \alpha_{1}+R_{1} \cos \alpha_{1}-m_{1} g ; \tag{1.11}\\
& m_{2} a \cos \alpha_{2}-m_{2} a_{0}=-T \cos \alpha_{2}+R_{2} \sin \alpha_{2} ; \tag{1.12}\\
& m_{2} a \sin \alpha_{2}=T \sin \alpha_{2}+R_{2} \sin \alpha_{2}-m_{2} g ; \tag{1.13}\\
& -M a_{0}=R_{1} \sin \alpha_{1}-R_{2} \sin \alpha_{2}-T \cos \alpha_{1}+T \cos \alpha_{2} ; \tag{1.14}\\
& 0=R-R_{1} \cos \alpha_{1}-R_{2} \cos \alpha_{2}-M g . \tag{1.15}
\end{align*}
$$

By adding up equations (1.10), (1.12), and (1.14) all forces internal to the system cancel each other. In this way we obtain the required relation between accelerations a and a_{0} :

$$
\begin{equation*}
a=a_{0} \frac{M+m_{1}+m_{2}}{m_{1} \cos \alpha_{1}+m_{2} \cos \alpha_{2}} . \tag{1.16}
\end{equation*}
$$

The straightforward elimination of the unknown forces gives the final answer for a_{0} :

$$
\begin{equation*}
a_{0}=\frac{\left(m_{1} \sin \alpha_{1}-m_{2} \sin \alpha_{2}\right)\left(m_{1} \cos \alpha_{1}+m_{2} \cos \alpha_{2}\right)}{\left(m_{1}+m_{2}+M\right)\left(m_{1}+m_{2}\right)-\left(m_{1} \cos \alpha_{1}+m_{2} \cos \alpha_{2}\right)^{2}} . \tag{1.17}
\end{equation*}
$$

It follows from equation (1.17) that the prism will be in equilibrium ($a_{0}=0$) if:

$$
\begin{equation*}
\frac{m_{1}}{m_{2}}=\frac{\sin \alpha_{2}}{\sin \alpha_{1}} \tag{1.18}
\end{equation*}
$$

