Question 1.

The blocks slide relative to the prism with accelerations \mathbf{a}_1 and \mathbf{a}_2 , which are parallel to its sides and have the same magnitude *a* (see Fig. 1.1). The blocks move relative to the earth with accelerations:

The equations of motion for the blocks and for the prism have the following vector forms (see Fig. 1.2):

- (1.7) $m_1 \mathbf{w}_1 = m_1 \mathbf{g} + \mathbf{R}_1 + \mathbf{T}_1;$
- (1.8) $m_2 \mathbf{w}_2 = m_2 \mathbf{g} + \mathbf{R}_2 + \mathbf{T}_2;$
- (1.9) $M\mathbf{a}_0 = M\mathbf{g} \mathbf{R}_1 \mathbf{R}_2 + \mathbf{R} \mathbf{T}_1 \mathbf{T}_2.$

Fig. 1.2

The forces of tension \mathbf{T}_1 and \mathbf{T}_2 at the ends of the thread are of the same magnitude *T* since the masses of the thread and that of the pulley are negligible. Note that in equation (1.9) we account for the net force $-(\mathbf{T}_1 + \mathbf{T}_2)$, which the bended thread exerts on the prism through the pulley. The equations of motion result in a system of six scalar equations when projected along *x* and *y*:

(1.10)
$$m_1 a \cos \alpha_1 - m_1 a_0 = T \cos \alpha_1 - R_1 \sin \alpha_1;$$

(1.11)
$$m_1 a \sin \alpha_1 = T \sin \alpha_1 + R_1 \cos \alpha_1 - m_1 g;$$

(1.12) $m_2 a \cos \alpha_2 - m_2 a_0 = -T \cos \alpha_2 + R_2 \sin \alpha_2;$

(1.13) $m_2 a \sin \alpha_2 = T \sin \alpha_2 + R_2 \sin \alpha_2 - m_2 g;$

(1.14)
$$-Ma_0 = R_1 \sin \alpha_1 - R_2 \sin \alpha_2 - T \cos \alpha_1 + T \cos \alpha_2;$$

(1.15) $0 = R - R_1 \cos \alpha_1 - R_2 \cos \alpha_2 - Mg.$

By adding up equations (1.10), (1.12), and (1.14) all forces internal to the system cancel each other. In this way we obtain the required relation between accelerations a and a_0 :

(1.16)
$$a = a_0 \frac{M + m_1 + m_2}{m_1 \cos \alpha_1 + m_2 \cos \alpha_2}.$$

The straightforward elimination of the unknown forces gives the final answer for a_0 :

(1.17)
$$a_0 = \frac{(m_1 \sin \alpha_1 - m_2 \sin \alpha_2)(m_1 \cos \alpha_1 + m_2 \cos \alpha_2)}{(m_1 + m_2 + M)(m_1 + m_2) - (m_1 \cos \alpha_1 + m_2 \cos \alpha_2)^2}.$$

It follows from equation (1.17) that the prism will be in equilibrium ($a_0 = 0$) if:

(1.18)
$$\frac{m_1}{m_2} = \frac{\sin \alpha_2}{\sin \alpha_1}.$$