Question 3.

A circuit equivalent to the given one is shown in Fig. 3. In a steady state (the capacitors are completely charged already) the same current I flows through all the resistors in the closed circuit ABFGHDA. From the Kirchhoff's second rule we obtain:

(3.1)
$$I = \frac{E_4 - E_1}{4R}$$

Next we apply this rule for the circuit ABCDA:

$$(3.2) V_1 + IR = E_2 - E_1,$$

where V_1 is the potential difference across the capacitor C_1 . By using the expression (3.1) for *I*, and the equation (3.2) we obtain:

(3.3)
$$V_1 = E_2 - E_1 - \frac{E_4 - E_1}{4} = 1 \text{ V}.$$

Similarly, we obtain the potential differences V_2 and V_4 across the capacitors C_2 and C_4 by considering circuits BFGCB and FGHEF:

(3.4)
$$V_2 = E_4 - E_2 - \frac{E_4 - E_1}{4} = 5 \text{ V},$$

(3.5)
$$V_4 = E_4 - E_3 - \frac{E_4 - E_1}{4} = 1 \text{ V}.$$

Finally, the voltage V_3 across C_3 is found by applying the Kirchhoff's rule for the outermost circuit EHDAH:

(3.6)
$$V_3 = E_3 - E_1 - \frac{E_4 - E_1}{4} = 5 \text{ V}.$$

The total energy of the capacitors is expressed by the formula:

(3.7)
$$W = \frac{C}{2} \left(V_1^2 + V_2^2 + V_3^2 + V_4^2 \right) = 26 \,\mu J.$$

Fig. 3

When points B and H are short connected the same electric current I' flows through the resistors in the BFGH circuit. It can be calculated, again by means of the Kirchhoff's rule, that:

(3.8) $I' = \frac{E_4}{2R}$.

The new steady-state voltage on C_2 is found by considering the BFGCB circuit: (3.9) $V'_2 + I'R = E_4 - E_2$ or finally:

(3.10)
$$V_2' = \frac{E_4}{2} - E_2 = 0 \text{ V}.$$

Therefore the charge q'_2 on C_2 in the new steady state is zero.