Question 3.

A circuit equivalent to the given one is shown in Fig. 3. In a steady state (the capacitors are completely charged already) the same current I flows through all the resistors in the closed circuit ABFGHDA. From the Kirchhoff's second rule we obtain:

$$
\begin{equation*}
I=\frac{E_{4}-E_{1}}{4 R} . \tag{3.1}
\end{equation*}
$$

Next we apply this rule for the circuit ABCDA:

$$
\begin{equation*}
V_{1}+I R=E_{2}-E_{1}, \tag{3.2}
\end{equation*}
$$

where V_{1} is the potential difference across the capacitor C_{1}. By using the expression (3.1) for I, and the equation (3.2) we obtain:

$$
\begin{equation*}
V_{1}=E_{2}-E_{1}-\frac{E_{4}-E_{1}}{4}=1 \mathrm{~V} \tag{3.3}
\end{equation*}
$$

Similarly, we obtain the potential differences V_{2} and V_{4} across the capacitors C_{2} and C_{4} by considering circuits BFGCB and FGHEF:

$$
\begin{align*}
& V_{2}=E_{4}-E_{2}-\frac{E_{4}-E_{1}}{4}=5 \mathrm{~V}, \tag{3.4}\\
& V_{4}=E_{4}-E_{3}-\frac{E_{4}-E_{1}}{4}=1 \mathrm{~V} \tag{3.5}
\end{align*}
$$

Finally, the voltage V_{3} across C_{3} is found by applying the Kirchhoff's rule for the outermost circuit EHDAH:

$$
\begin{equation*}
V_{3}=E_{3}-E_{1}-\frac{E_{4}-E_{1}}{4}=5 \mathrm{~V} \tag{3.6}
\end{equation*}
$$

The total energy of the capacitors is expressed by the formula:

$$
\begin{equation*}
W=\frac{C}{2}\left(V_{1}^{2}+V_{2}^{2}+V_{3}^{2}+V_{4}^{2}\right)=26 \mu \mathrm{~J} . \tag{3.7}
\end{equation*}
$$

Fig. 3
When points B and H are short connected the same electric current I ' flows through the resistors in the BFGH circuit. It can be calculated, again by means of the Kirchhoff's rule, that:

$$
\begin{equation*}
I^{\prime}=\frac{E_{4}}{2 R} . \tag{3.8}
\end{equation*}
$$

The new steady-state voltage on C_{2} is found by considering the BFGCB circuit:

$$
\begin{equation*}
V_{2}^{\prime}+I^{\prime} R=E_{4}-E_{2} \tag{3.9}
\end{equation*}
$$

or finally:

$$
\begin{equation*}
V_{2}^{\prime}=\frac{E_{4}}{2}-E_{2}=0 \mathrm{~V} \tag{3.10}
\end{equation*}
$$

Therefore the charge q_{2}^{\prime} on C_{2} in the new steady state is zero.

