Solution Problem 1

The inertia moments of the three cylinders are:

$$
\begin{equation*}
I_{1}=\frac{1}{2} \rho_{1} \pi\left(R^{4}-r^{4}\right) h, \quad I_{2}=\frac{1}{2} \rho_{2} \pi R^{4} h=\frac{1}{2} m R^{2} \quad, \quad I 3=\frac{1}{2} \rho_{2} \pi\left(R^{4}-r^{4}\right) h, \tag{1}
\end{equation*}
$$

Because the three cylinders have the same mass :

$$
\begin{equation*}
m=\rho_{1} \pi\left(R^{2}-r^{2}\right) h=\rho_{2} \pi R^{2} h \tag{2}
\end{equation*}
$$

it results:

$$
\begin{equation*}
r^{2}=R^{2}\left(1-\frac{\rho_{2}}{\rho_{1}}\right)=R^{2}\left(1-\frac{1}{n}\right), n=\frac{\rho_{1}}{\rho_{2}} \tag{3}
\end{equation*}
$$

The inertia moments can be written:

$$
\begin{equation*}
\left.I_{1}=I_{2}\left(2-\frac{1}{n}\right)\right\rangle I_{2}, \quad I_{3}=I_{2}\left(2-\frac{1}{n}\right) \cdot \frac{1}{n}=\frac{I_{1}}{n} \tag{4}
\end{equation*}
$$

In the expression of the inertia momentum I_{3} the sum of the two factors is constant:

$$
\left(2-\frac{1}{n}\right)+\frac{1}{n}=2
$$

independent of n, so that their products are maximum when these factors are equal: $2-\frac{1}{n}=\frac{1}{n}$; it results $\mathrm{n}=1$, and the products $\left(2-\frac{1}{n}\right) \cdot \frac{1}{n}=1$. In fact $\mathrm{n}>1$, so that the products is les than 1. It results:

$$
\begin{equation*}
\mathrm{I}_{1}>\mathrm{I}_{2}>\mathrm{I}_{3} \tag{5}
\end{equation*}
$$

For a cylinder rolling over freely on the inclined plane (fig. 1.1) we can write the equations:

$$
\begin{align*}
& m g \sin \alpha-F_{f}=m a \tag{6}\\
& N-m g \cos \alpha=0 \\
& F_{f} R=I \varepsilon \tag{7}
\end{align*}
$$

where ε is the angular acceleration. If the cylinder doesn't slide we have the condition:

$$
\begin{equation*}
a=\varepsilon R \tag{8}
\end{equation*}
$$

Solving the equation system (6-8) we find:

$$
\begin{equation*}
a=\frac{g \sin \alpha}{1+\frac{I}{m R^{2}}}, \quad F_{f}=\frac{m g \sin \alpha}{1+\frac{m R^{2}}{I}} \tag{9}
\end{equation*}
$$

The condition of non-sliding is:

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{f}}<\mu \mathrm{N}=\mu \mathrm{mg} \sin \alpha \\
\operatorname{tg} \alpha<\mu\left(1+\frac{m R^{2}}{I_{1}}\right) \tag{10}
\end{array}
$$

Fig. 1.1
In the case of the cylinders from this problem, the condition necessary so that none of them slides is obtained for maximum I:

$$
\begin{equation*}
\operatorname{tg} \alpha<\mu\left(1+\frac{m R^{2}}{I_{1}}\right)=\mu \frac{4 n-1}{2 n-1} \tag{11}
\end{equation*}
$$

The accelerations of the cylinders are:

$$
\begin{equation*}
a_{1}=\frac{2 g \sin \alpha}{3+\left(1-\frac{1}{n}\right)}, a_{2}=\frac{2 g \sin \alpha}{3}, \quad a_{3}=\frac{2 g \sin \alpha}{3-\left(1-\frac{1}{n}\right)^{2}} . \tag{12}
\end{equation*}
$$

The relation between accelerations:

$$
\begin{equation*}
\mathrm{a}_{1}<\mathrm{a}_{2}<\mathrm{a}_{3} \tag{13}
\end{equation*}
$$

In the case than all the three cylinders slide:

$$
\begin{equation*}
F_{f}=\mu N=\mu m g \cos \alpha \tag{14}
\end{equation*}
$$

and from (7) results:

$$
\begin{equation*}
\varepsilon=\frac{R}{I} \mu m g \cos \alpha \tag{15}
\end{equation*}
$$

for the cylinders of the problem:

$$
\begin{gather*}
\varepsilon_{1}: \varepsilon_{2}: \varepsilon_{3}=\frac{1}{I_{1}}: \frac{1}{I_{2}}: \frac{1}{I_{3}}=1:\left(1-\frac{1}{n}\right): n \\
\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3} \tag{16}
\end{gather*}
$$

In the case that one of the cylinders is sliding:

$$
\begin{align*}
& m g \sin \alpha-F_{f}=m a, \quad F_{f}=\mu m g \cos \alpha \tag{17}\\
& a=g(\sin \alpha-\mu \cos \alpha) \tag{18}
\end{align*}
$$

Let \vec{F} be the total force acting on the liquid mass m_{1} inside the cylinder (fig.1.2), we can write:

$$
\begin{align*}
& F_{x}+m_{l} g \sin \alpha=m_{l} a=m_{l} g(\sin \alpha-\mu \cos \alpha), \quad F_{y}-m_{l} g \cos \alpha=0 \tag{19}\\
& F=\sqrt{F_{x}^{2}+F_{y}^{2}}=m_{l} g \cos \alpha \cdot \sqrt{1+\mu^{2}}=m_{l} g \frac{\cos \alpha}{\cos \phi} \tag{20}
\end{align*}
$$

where ϕ is the friction angle $(\operatorname{tg} \phi=\mu)$.

ERROR: stackunderflow
OFFENDING COMMAND:

STACK:

