
Solution Problem 1 

 

 The inertia moments of the three cylinders are: 
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Because the three cylinders have  the same mass : 
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it results: 
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The inertia moments can be written:  
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In the expression of the inertia momentum  3I  the sum of the two factors is constant: 
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independent of n, so that their products are maximum when these factors are equal:  
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. In fact n > 1, so that the products 

is les than 1. It results: 

 

I1 > I2 > I3                                (5) 

For a cylinder rolling over freely on the inclined plane (fig. 1.1) we can write the equations: 

 

maFmg f =−αsin                                            (6) 

0cos =− αmgN  

εIRFf =                                                              (7) 

 

where ε is the angular acceleration. If the cylinder doesn’t slide we have the condition: 

 

Ra ε=                                                                 (8) 

 

Solving the equation system (6-8) we find: 
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The condition of non-sliding is: 

 

Ff < µN = µmgsinα 
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In the case of the cylinders from this problem, the condition necessary so that none of them 

slides is obtained for maximum I: 
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The accelerations of the cylinders are: 
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The relation between accelerations: 

 

a1 < a2 < a3                           (13) 

 

In the case than all the three cylinders slide: 

αµµ cosmgNF f ==                      (14) 

and from (7) results: 

Fig. 1.1 
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for the cylinders of the problem: 
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ε1 < ε2 <  ε3                        (16) 

 

In the case that one of the cylinders is sliding: 

 

maFmg f =−αsin ,   αµ cosmgF f = ,    (17) 

( )αµα cossin −= ga                                 (18) 

 

Let F
r

be the total force acting on the liquid mass ml inside the cylinder (fig.1.2), we can write: 
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where φ  is the friction angle ( )µφ =tg . 
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