
Solution Problem 2 

 

a) We consider argon an ideal mono-atomic gas and the collisions of the atoms with the 

piston perfect elastic. In such a collision with a fix wall the speed v
r

 of the particle changes 

only the direction so that the speed v
r

 and the speed 'v
r

after collision there are in the same 

plane with the normal and the incident and reflection angle are equal.  
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In the problem the wall moves with the speed u
r

 perpendicular on the wall. The relative speed 

of the particle with respect the wall is uv
rr

− . Choosing the Oz axis perpendicular on the wall in 

the sense of u
r

, the conditions of the elastic collision give: 
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The increase of the kinetic energy of the particle with mass om  after collision is: 
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because u is much smaller than
zv . 

If kn is the number of molecules from unit volume with the speed component zkv , then the 

number of molecules with this component which collide in the time dt the area dS of the piston 

is: 
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These molecules will have a change of the kinetic energy: 
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where udtdSdV =  is the increase of the volume of gas. 

The change of the kinetic energy of the gas corresponding to the increase of volume dV is: 
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and: 
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Integrating equation (7) results: 
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The internal energy of the ideal mono-atomic gas is proportional with the absolute temperature 

T and the equation (8) can be written: 
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b) The oxygen is in contact with a thermostat and will suffer an isothermal process. The 

internal energy will be modified only by the adiabatic process suffered by argon gas: 
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where ν is the number of kilomoles.  For argon RCV
2

3
= . 

For the entire system L=0 and  QU =∆ . 

We will use indices 1, respectively 2, for the measures corresponding to argon from cylinder 

A, respectively oxygen from the cylinder B: 
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From equation (11) results: 
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For the isothermal process suffered by oxygen: 
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From the equilibrium condition: 
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For argon: 
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c) When the valve is opened the gases intermix and at thermal equilibrium the final 

pressure will be 'p  and the temperature T. The total number of kilomoles is constant: 
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The total volume of the system is constant: 
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From equation (18) results the final pressure: 
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