Solution Problem 2

a) We consider argon an ideal mono-atomic gas and the collisions of the atoms with the piston perfect elastic. In such a collision with a fix wall the speed \vec{v} of the particle changes only the direction so that the speed \vec{v} and the speed \vec{v} 'after collision there are in the same plane with the normal and the incident and reflection angle are equal.

$$
\begin{equation*}
v_{n}^{\prime}=-v_{n}, v_{t}^{\prime}=v_{t} \tag{1}
\end{equation*}
$$

In the problem the wall moves with the speed \vec{u} perpendicular on the wall. The relative speed of the particle with respect the wall is $\vec{v}-\vec{u}$. Choosing the Oz axis perpendicular on the wall in the sense of \vec{u}, the conditions of the elastic collision give:

$$
\begin{gather*}
(\vec{v}-\vec{u})_{z}=-(\vec{v}-\vec{u})_{z},(\vec{v}-\vec{u})_{x, y}=\left(\vec{v}^{\prime}-\vec{u}\right)_{x, y} ; \\
v_{z}-u=-\left(v_{z}^{\prime}-u\right), v_{z}^{\prime}=2 u-v_{z}, v_{x, y}^{\prime}=v_{x, y} \tag{2}
\end{gather*}
$$

The increase of the kinetic energy of the particle with mass m_{o} after collision is:

$$
\begin{equation*}
\frac{1}{2} m_{o} v^{\prime 2}-\frac{1}{2} m_{o} v^{2}=\frac{1}{2} m_{o}\left(v_{z}^{\prime 2}-v_{z}^{2}\right)=2 m_{o} u\left(u-v_{z}\right) \cong-2 m_{o} u v_{z} \tag{3}
\end{equation*}
$$

because u is much smaller than v_{z}.
If n_{k} is the number of molecules from unit volume with the speed component $v_{z k}$, then the number of molecules with this component which collide in the time dt the area dS of the piston is:

$$
\begin{equation*}
\frac{1}{2} n_{k} v_{z k} d t d S \tag{4}
\end{equation*}
$$

These molecules will have a change of the kinetic energy:

$$
\begin{equation*}
\frac{1}{2} n_{k} v_{z k} d t d S\left(-2 m_{o} u v_{z k}\right)=-m_{o} n_{k} v_{z k}^{2} d V \tag{5}
\end{equation*}
$$

where $d V=u d t d S$ is the increase of the volume of gas.
The change of the kinetic energy of the gas corresponding to the increase of volume dV is:

$$
\begin{equation*}
d E_{c}=-m_{o} d V \sum_{k} n_{k} v_{z k}^{2}=-\frac{1}{3} n m_{o} \bar{v}^{2} d V \tag{6}
\end{equation*}
$$

and:

$$
\begin{equation*}
d U=-\frac{2}{3} N \frac{m_{o} \bar{v}^{2}}{2} \cdot \frac{d V}{V}=-\frac{2}{3} U \frac{d V}{V} \tag{7}
\end{equation*}
$$

Integrating equation (7) results:

$$
\begin{equation*}
U V^{2 / 3}=\text { const } . \tag{8}
\end{equation*}
$$

The internal energy of the ideal mono-atomic gas is proportional with the absolute temperature T and the equation (8) can be written:

$$
\begin{equation*}
T V^{2 / 3}=\text { const. } \tag{9}
\end{equation*}
$$

b) The oxygen is in contact with a thermostat and will suffer an isothermal process. The internal energy will be modified only by the adiabatic process suffered by argon gas:
$\Delta U=v C_{V} \Delta T=m c_{V} \Delta T \quad$ (10)
where v is the number of kilomoles. For argon $C_{V}=\frac{3}{2} R$.
For the entire system $\mathrm{L}=0$ and $\Delta U=Q$.
We will use indices 1 , respectively 2 , for the measures corresponding to argon from cylinder A , respectively oxygen from the cylinder B:

$$
\begin{equation*}
\Delta U=\frac{m_{1}}{\mu_{1}} \cdot \frac{3}{2} \cdot R\left(T_{1}^{\prime}-T_{1}\right)=Q=\frac{m_{1}}{\mu_{1}} \cdot \frac{3}{2} R T_{1}\left[\left(\frac{V_{1}}{V_{1}^{\prime}}\right)^{2 / 3}-1\right] \tag{11}
\end{equation*}
$$

From equation (11) results:

$$
\begin{gather*}
T_{1}=\frac{2}{3} \cdot \frac{\mu_{1}}{m_{1}} \cdot \frac{Q}{R} \cdot \frac{1}{\left(\frac{V_{1}}{V_{1}^{\prime}}\right)^{2 / 3}-1}=1000 \mathrm{~K} \tag{12}\\
T_{1}^{\prime}=\frac{T_{1}}{4}=250 \mathrm{~K}
\end{gather*}
$$

For the isothermal process suffered by oxygen:

$$
\begin{equation*}
\frac{\rho_{2}^{\prime}}{\rho_{2}}=\frac{p_{2}^{\prime}}{p_{2}} \tag{14}
\end{equation*}
$$

$p_{2}^{\prime}=2,00 \mathrm{~atm}=2,026 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
From the equilibrium condition:

$$
\begin{equation*}
p_{1}^{\prime}=p_{2}^{\prime}=2 \mathrm{~atm} \tag{15}
\end{equation*}
$$

For argon:

$$
\begin{align*}
& p_{1}=p_{1}^{\prime} \cdot \frac{V_{1}^{\prime}}{V_{1}} \cdot \frac{T_{1}}{T_{1}^{\prime}}=64 \mathrm{~atm}=64,9 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2} \tag{16}\\
& V_{1}=\frac{m_{1}}{\mu_{1}} \cdot \frac{R T_{1}}{p_{1}}=1,02 \mathrm{~m}^{3}, V_{1}^{\prime}=8 V_{1}=8,16 \mathrm{~m}^{3} \tag{17}
\end{align*}
$$

c) When the valve is opened the gases intermix and at thermal equilibrium the final pressure will be p and the temperature T. The total number of kilomoles is constant:

$$
\begin{align*}
v_{1}+v_{2}=v^{\prime}, \frac{p_{1}^{\prime} V_{1}^{\prime}}{R T_{1}^{\prime}}+\frac{p_{2}^{\prime} V_{2}^{\prime}}{R T} & =\frac{p\left(V_{1}^{\prime}+V_{2}^{\prime}\right)}{R T} \tag{18}\\
p_{1}^{\prime}+p_{2}^{\prime}=2 a t m, T_{2} & =T_{2}^{\prime}=T=300 \mathrm{~K}
\end{align*}
$$

The total volume of the system is constant:

$$
\begin{equation*}
V_{1}+V_{2}=V_{1}^{\prime}+V_{2}^{\prime}, \quad \frac{V_{2}^{\prime}}{V_{2}}=\frac{\rho_{2}}{\rho_{2}^{\prime}}, \quad V_{2}^{\prime}=\frac{V_{2}}{2}=7,14 m^{3} \tag{19}
\end{equation*}
$$

From equation (18) results the final pressure:

$$
\begin{equation*}
p=p_{1}^{\prime} \cdot \frac{1}{V_{1}+V_{2}} \cdot\left(V_{1}^{\prime} \cdot \frac{T}{T_{1}^{\prime}}+V_{2}^{\prime}\right)=2,2 \mathrm{~atm}=2,23 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2} \tag{20}
\end{equation*}
$$

