Solution of problem 1:

a) $\omega=0$:

The forces in this case are (see figure):
$\vec{G}=\vec{Z}+\vec{N}=m \cdot \vec{g}$
(1),
$|\vec{Z}|=m \cdot g \cdot \sin \alpha=Z$
$|\vec{N}|=m \cdot g \cdot \cos \alpha=N$
$|\vec{R}|=\mu \cdot N=\mu \cdot m \cdot g \cdot \cos \alpha=R$
(4).

[\vec{R} : force of friction]
The body is at rest relative to the rod, if $Z \leq R$. According to equations (2) and (4) this is equivalent to $\tan \alpha \leq \tan \beta$. That means, the body is at rest relative to the rod for $\alpha \leq \beta$ and the body moves along the rod for $\alpha>\beta$.
b) $\omega>0$:

Two different situations have to be considered: 1. $\alpha>\beta$ and $2 . \alpha \leq \beta$.
If the rod is moving $(\omega \neq 0)$ the forces are $\vec{G}=m \cdot \vec{g}$ and $\left|\vec{F}_{r}\right|=m \cdot r \cdot \vec{\omega}^{2}$.
From the parallelogramm of forces (see figure):
$\vec{Z}+\vec{N}=\vec{G}+\vec{F}_{r}$
The condition of equilibrium is:
$|\vec{Z}|=\mu|\vec{N}|$

Case 1: $\quad \vec{Z}$ is oriented downwards, i.e. $g \cdot \sin \alpha>r \cdot \omega^{2} \cdot \cos \alpha$.

$$
|\vec{Z}|=m \cdot g \cdot \sin \alpha-m \cdot r \cdot \omega^{2} \cdot \cos \alpha \quad \text { and } \quad|\vec{N}|=m \cdot g \cdot \cos \alpha+m \cdot r \cdot \omega^{2} \cdot \sin \alpha
$$

Case 2: $\quad \vec{Z}$ is oriented upwards, i.e. $g \cdot \sin \alpha<r \cdot \omega^{2} \cdot \cos \alpha$.

$$
|\vec{Z}|=-m \cdot g \cdot \sin \alpha+m \cdot r \cdot \omega^{2} \cdot \cos \alpha \text { and }|\vec{N}|=m \cdot g \cdot \cos \alpha+m \cdot r \cdot \omega^{2} \cdot \sin \alpha
$$

It follows from the condition of equilibrium equation (6) that

$$
\begin{equation*}
\pm\left(g \cdot \sin \alpha-r \cdot \omega^{2} \cdot \cos \alpha\right)=\tan \beta \cdot\left(g \cdot \cos \alpha+r \cdot \omega^{2} \cdot \sin \alpha\right) \tag{7}
\end{equation*}
$$

Algebraic manipulation of equation (7) leads to:

$$
\begin{align*}
& g \cdot \sin (\alpha-\beta)=r \cdot \omega^{2} \cdot \cos (\alpha-\beta) \tag{8}\\
& g \cdot \sin (\alpha+\beta)=r \cdot \omega^{2} \cdot \cos (\alpha+\beta) \tag{9}
\end{align*}
$$

That means,

$$
\begin{equation*}
r_{1,2}=\frac{g}{\omega^{2}} \cdot \tan (\alpha \mp \beta) \tag{10}
\end{equation*}
$$

The body is at rest relative to the rotating rod in the case $\alpha>\beta$ if the following inequalities hold:

$$
\begin{equation*}
r_{1} \leq r \leq r_{2} \quad \text { with } r_{1}, r_{2}>0 \tag{11}
\end{equation*}
$$

or
$L_{1} \leq L \leq L_{2} \quad$ with $L_{1}=r_{1} / \cos \alpha$ and $L_{2}=r_{2} / \cos \alpha$
The body is at rest relative to the rotating rod in the case $\alpha \leq \beta$ if the following inequalities hold:

$$
\begin{equation*}
0 \leq r \leq r_{2} \quad \text { with } r_{1}=0\left(\text { since } r_{1}<0 \text { is not a physical solution }\right), r_{2}>0 \tag{13}
\end{equation*}
$$

Inequality (13) is equivalent to

$$
\begin{equation*}
0 \leq L \leq L_{2} \quad \text { with } L_{2}=r_{2} / \cos \alpha>0 \tag{14}
\end{equation*}
$$

