Problem 1

A hollow sphere of radius $R=0.5 \mathrm{~m}$ rotates about a vertical axis through its centre with an angular velocity of $\omega=5 \mathrm{~s}^{-1}$. Inside the sphere a small block is moving together with the sphere at the height of $R / 2$ (Fig. σ). $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right.$.)
a) What should be at least the coefficient of friction to fulfill this condition?
b) Find the minimal coefficient of friction also for the case of $\omega=8 \mathrm{~s}^{-1}$.
c) Investigate the problem of stability in both cases,
α) for a small change of the position of the block,
β) for a small change of the angular velocity of the sphere.

Figure 6

Figure 7

