Solution

a) The block moves along a horizontal circle of radius $R \sin \alpha$. The net force acting on the block is pointed to the centre of this circle (Fig. 7). The vector sum of the normal force exerted by the wall N, the frictional force S and the weight $m g$ is equal to the resultant: $m \omega^{2} R \sin \alpha$.
The connections between the horizontal and vertical components:

$$
\begin{aligned}
& m \omega^{2} R \sin \alpha=N \sin \alpha-S \cos \alpha, \\
& m g=N \cos \alpha+S \sin \alpha .
\end{aligned}
$$

The solution of the system of equations:

$$
\begin{aligned}
& S=m g \sin \alpha\left(1-\frac{\omega^{2} R \cos \alpha}{g}\right), \\
& N=m g\left(\cos \alpha+\frac{\omega^{2} R \sin ^{2} \alpha}{g}\right) .
\end{aligned}
$$

The block does not slip down if

$$
\mu_{a} \geq \frac{S}{N}=\sin \alpha \cdot \frac{1-\frac{\omega^{2} R \cos \alpha}{g}}{\cos \alpha+\frac{\omega^{2} R \sin ^{2} \alpha}{g}}=\frac{3 \sqrt{3}}{23}=\mathbf{0 . 2 2 5 9} .
$$

In this case there must be at least this friction to prevent slipping, i.e. sliding down.
b) If on the other hand $\frac{\omega^{2} R \cos \alpha}{g}>1$ some friction is necessary to prevent the block to slip upwards. $m \omega^{2} R \sin \alpha$ must be equal to the resultant of forces S, N and $m g$. Condition for the minimal coefficient of friction is (Fig. 8):

$$
\begin{aligned}
& \mu_{b} \geq \frac{S}{N}=\sin \alpha \cdot \frac{\frac{\omega^{2} R \cos \alpha}{g}-1}{\cos \alpha+\frac{\omega^{2} R \sin ^{2} \alpha}{g}}= \\
& =\frac{3 \sqrt{3}}{29}=\mathbf{0 . 1 7 9 2} .
\end{aligned}
$$

Figure 8
c) We have to investigate μ_{a} and μ_{b} as functions of α and ω in the cases a) and b) (see Fig. 9/a and 9/b):

Figure 9/a

Figure 9/b

In case a): if the block slips upwards, it comes back; if it slips down it does not return. If ω increases, the block remains in equilibrium, if ω decreases it slips downwards.

In case b): if the block slips upwards it stays there; if the block slips downwards it returns. If ω increases the block climbs upwards', if ω decreases the block remains in equilibrium.

