Problem 1. The compression ratio of a four-stroke internal combustion engine is $\varepsilon=9.5$. The engine draws in air and gaseous fuel at a temperature $27^{\circ} \mathrm{C}$ at a pressure $1 \mathrm{~atm}=100 \mathrm{kPa}$. Compression follows an adiabatic process from point 1 to point 2, see Fig. 1. The pressure in the cylinder is doubled during the mixture ignition (2-3). The hot exhaust gas expands adiabatically to the volume V_{2} pushing the piston downwards (3-4). Then the exhaust valve opens and the pressure gets back to the initial value of 1 atm . All processes in the cylinder are supposed to be ideal. The Poisson constant (i.e. the ratio of specific heats C_{p} / C_{V}) for the mixture and exhaust gas is $\kappa=1.40$. (The compression ratio is the ratio of the volume of the cylinder when the piston is at the bottom to the volume when the piston is at the top.)

Figure 1:
a) Which processes run between the points $0-1,2-3,4-1,1-0$?
b) Determine the pressure and the temperature in the states $1,2,3$ and 4 .
c) Find the thermal efficiency of the cycle.
d) Discuss obtained results. Are they realistic?

