Problem 2. Dipping the frame in a soap solution, the soap forms a rectangle film of length b and height h. White light falls on the film at an angle α (measured with respect to the normal direction). The reflected light displays a green color of wavelength λ_{0}.
a) Find out if it is possible to determine the mass of the soap film using the laboratory scales which has calibration accuracy of 0.1 mg .
b) What color does the thinnest possible soap film display being seen from the perpendicular direction? Derive the related equations.

Constants and given data: relative refractive index $n=1.33$, the wavelength of the reflected green light $\lambda_{0}=500 \mathrm{~nm}, \alpha=30^{\circ}, b=0.020 \mathrm{~m}, h=0.030 \mathrm{~m}$, density $\varrho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$.

