Problem 3. An electron gun T emits electrons accelerated by a potential difference U in a vacuum in the direction of the line a as shown in Fig. 2. The target M is placed at a distance d from the electron gun in such a way that the line segment connecting the points T and M and the line a subtend the angle α as shown in Fig. 2. Find the magnetic induction B of the uniform magnetic field

Figure 2:
a) perpendicular to the plane determined by the line a and the point M
b) parallel to the segment $T M$
in order that the electrons hit the target M. Find first the general solution and then substitute the following values: $U=1000 \mathrm{~V}, e=1.60 \cdot 10^{-19} \mathrm{C}$, $m_{e}=9.11 \cdot 10^{-31} \mathrm{~kg}, \alpha=60^{\circ}, d=5.0 \mathrm{~cm}, B<0.030 \mathrm{~T}$.

