Problem 1.

1) During the rocket moving along the circular orbit its centripetal acceleration is created by moon gravity force:

$$
G \frac{M M_{M}}{R^{2}}=\frac{M v_{0}^{2}}{R}
$$

where $R=R_{M}+h$ is the primary orbit radius, v_{0}-the rocket velocity on the circular orbit:

$$
v_{0}=\sqrt{G \frac{M_{M}}{R}}
$$

Since $g_{M}=G \frac{M_{M}}{R_{M}^{2}}$ it yields

$$
\begin{equation*}
v_{0}=\sqrt{\frac{g_{M} R_{M}^{2}}{R}}=R_{M} \sqrt{\frac{g_{M}}{R_{M}+h}} \tag{1}
\end{equation*}
$$

The rocket velocity will remain perpendicular to the radius-vector OA after the braking engine sends tangential momentum to the rocket (Fig.1). The rocket should then move along the elliptical trajectory with the focus in the Moon's center.

Denoting the rocket velocity at points A and B as v_{A} and v_{B} we can write the equations for energy and momentum conservation as follows:

$$
\begin{align*}
& \frac{M v_{A}^{2}}{2}-G \frac{M M_{M}}{R}=\frac{M v_{B}^{2}}{2}-G \frac{M M_{M}}{R_{M}} \tag{2}\\
& M v_{A} R=M v_{B} R_{M} \tag{3}
\end{align*}
$$

Solving equations (2) and (3) jointly we find

$$
v_{A}=\sqrt{2 G \frac{M_{M} R_{M}}{R\left(R+R_{M}\right)}}
$$

Taking (1) into account, we get

$$
v_{A}=v_{0} \sqrt{\frac{2 R_{M}}{R+R_{M}}} .
$$

Thus the rocket velocity change Δv at point A must be

$$
\Delta v=v_{0}-v_{A}=v_{0}\left(1-\sqrt{\frac{2 R_{M}}{R+R_{M}}}\right)=v_{0}\left(1-\sqrt{\frac{2 R_{M}}{2 R_{M}+h}}\right)=24 \mathrm{~m} / \mathrm{s} .
$$

Since the engine switches on for a short time the momentum conservation low in the system "rocket-fuel" can be written in the form

$$
\left(M-m_{1}\right) \Delta v=m_{1} u
$$

where m_{1} is the burnt fuel mass.
This yields

$$
m_{1}=\frac{\Delta v}{u+\Delta v}
$$

Allow for $\Delta v \ll u$ we find

$$
m_{1} \approx \frac{\Delta v}{u} M=29 \mathrm{~kg}
$$

2) In the second case the vector \vec{v}_{2} is directed perpendicular to the vector \vec{v}_{0} thus giving

$$
\vec{v}_{A}=\vec{v}_{0}+\Delta \vec{v}_{2}, \quad v_{A}=\sqrt{v_{0}^{2}+\Delta v_{2}^{2}}
$$

Based on the energy conservation law in this case the equation can be written as

$$
\begin{equation*}
\frac{M\left(v_{0}^{2}+\Delta v_{2}^{2}\right)}{2}-\frac{G M M_{M}}{R}=\frac{M v_{C}^{2}}{2}-\frac{G M M_{M}}{R_{M}} \tag{4}
\end{equation*}
$$

and from the momentum conservation law

$$
\begin{equation*}
M v_{0} R=M v_{C} R_{M} \tag{5}
\end{equation*}
$$

Solving equations (4) and (5) jointly and taking into account (1) we find

$$
\Delta v_{2}=\sqrt{g_{M} \frac{\left(R-R_{M}\right)^{2}}{R}}=h \sqrt{\frac{g_{M}}{R_{M}+h}} \approx 97 \mathrm{~m} / \mathrm{s}
$$

Using the momentum conservation law we obtain

$$
m_{2}=\frac{\Delta v_{2}}{u} M \approx 116 \mathrm{~kg}
$$

