Problem 3.

1) The beam divergence angle $\delta \varphi$ caused by diffraction defines the accuracy of the telescope optical axis installation:

$$
\delta \varphi \approx \lambda / D \approx 2.6 \cdot 10^{-7} \mathrm{rad} . \approx 0.05^{\prime \prime}
$$

2) The part K_{1} of the light energy of a laser, directed to a reflector, may be found by the ratio of the area of S_{1} reflector ($S_{1}=\pi d^{2} / 4$) versus the area S_{2} of the light spot on the Moon ($S_{2}=\pi r^{2}$, where $r=L \delta \varphi \approx L \lambda / D, L$ - the distance from the Earth to the Moon)

$$
K_{1}=\frac{S_{1}}{S_{2}}=\frac{d^{2}}{(2 r)^{2}}=\frac{d^{2} D^{2}}{4 \lambda^{2} L^{2}}
$$

The reflected light beam diverges as well and forms a light spot with the radius R on the Earth's surface:

$$
\mathrm{R}=\lambda \mathrm{L} / \mathrm{d}, \quad \text { as } \quad \mathrm{r} \ll \mathrm{R}
$$

That's why the part K_{2} of the reflected energy, which got into the telescope, makes

$$
K_{2}=\frac{D^{2}}{(2 R)^{2}}=\frac{D^{2} d^{2}}{4 \lambda^{2} L^{2}}
$$

The part K_{0} of the laser energy, that got into the telescope after having been reflected by the reflector on the Moon, equals

$$
K_{0}=K_{1} K_{2}=\left(\frac{d D}{2 \lambda L}\right)^{4} \approx 10^{-12}
$$

3) The pupil of a naked eye receives as less a part of the light flux compared to a telescope, as the area of the pupil S_{e} is less than the area of the telescope mirror S_{t} :

$$
K_{e}=K_{0} \frac{S_{e}}{S_{t}}=K_{0} \frac{d_{e}^{2}}{D^{2}} \approx 3.7 \cdot 10^{-18} .
$$

So the number of photons N getting into the pupil of the eye is equal

$$
N=\frac{E}{h V} K_{e}=12 .
$$

Since $N<n$, one can not perceive the reflected pulse with a naked eye.
4) In the absence of a reflector $\alpha=10 \%$ of the laser energy, that got onto the Moon, are dispersed by the lunar surface within a solid angle $\Omega_{1}=2 \pi$ steradian.

The solid angle in which one can see the telescope mirror from the Moon, constitutes

$$
\Omega_{2}=\mathrm{S}_{\mathrm{t}} / \mathrm{L}^{2}=\pi \mathrm{D}^{2} / 4 \mathrm{~L}^{2}
$$

That is why the part K of the energy gets into the telescope and it is equal

$$
K=\alpha \frac{\Omega_{2}}{\Omega_{1}}=\alpha \frac{D^{2}}{8 L^{2}} \approx 0.5 \cdot 10^{-18}
$$

Thus, the gain β, which is obtained through the use of the reflector is equal

$$
\beta=K_{d} / K \approx 2 \cdot 10^{6}
$$

Note. The result obtained is only evaluative as the light flux is unevenly distributed inside the angle of diffraction.

