Mechanics - Problem I (s points)

Jumping particle

A particle moves along the positive axis $O x$ (one-dimensional situation) under a force that's projection on $O x$ is $F_{x}=F_{0}$ as represented in the figure below (as function of x). At the origin of $O x$ axis is placed a perfectly reflecting wall.
A friction force of constant modulus $F_{f}=1,00 \mathrm{~N}$ acts anywhere the particle is situated.
The particle starts from the point $x=x_{0}=1,00 \mathrm{~m}$ having the kinetic energy $E_{c}=10,0 \mathrm{~J}$.
a. Find the length of the path of the particle before it comes to a final stop
b. Sketch the potential energy $U(x)$ of the particle in the force field F_{x}.
c. Draw qualitatively the dependence of the particle speed as function of his coordinate x.

