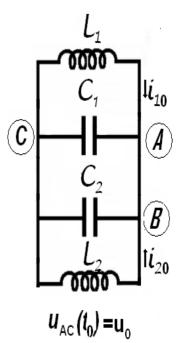

Electricity - Problem II (8 points)

Different kind of oscillation

Let's consider the electric circuit in the figure, for which $L_1=10~mH$, $L_2=20~mH$, $C_1=10~nF$, $C_2=5~nF$ and $R=100~k\Omega$. The switch K being closed the circuit is coupled with a source of alternating current. The current furnished by the source has constant intensity while the frequency of the current may be varied.



The switch K is now open. In the moment t_0 immediately after the switch is open the intensities of the

currents in the coils L_1 and $i_{01} = 0.1$ A and $i_{02} = 0.2$ A L_1 (the currents flow as in the figure); at the same moment, the potential difference on the capacitor with capacity C_1 is $U_0 = 40 V$:

- **b.** Calculate the frequency of electromagnetic oscillation in $L_1C_1C_2L_2$ circuit;
- **c.** Determine the intensity of the electric current in the *AB* conductor;
- **d.** Calculate the amplitude of the oscillation of the intensity of electric current in the coil L_1 .

Neglect the mutual induction of the coils, and the electric resistance of the conductors. Neglect the fast transition phenomena occurring when the switch is closed or opened.

