

Optics - Problem III (7points)

Prisms

Two dispersive prisms having apex angles $\hat{A}_{1}=60^{\circ}$ and $\hat{A}_{2}=30^{\circ}$ are glued as in the figure below $\left(\hat{C}=90^{\circ}\right)$. The dependences of refraction indexes of the prisms on the wavelength are given by the relations
$n_{1}(\lambda)=a_{1}+\frac{b_{1}}{\lambda^{2}} ;$
$n_{2}(\lambda)=a_{2}+\frac{b_{2}}{\lambda^{2}}$
were
$a_{1}=1,1, \quad b_{1}=1 \cdot 10^{5} \mathrm{~nm}^{2}, \quad a_{2}=1,3, \quad b_{2}=5 \cdot 10^{4} \mathrm{~nm}^{2}$.

a. Determine the wavelength λ_{0} of the incident radiation that pass through the prisms without refraction on $A C$ face at any incident angle; determine the corresponding refraction indexes of the prisms.
b. Draw the ray path in the system of prisms for three different radiations $\lambda_{\text {red }}, \lambda_{0}, \lambda_{\text {violet }}$ incident on the system at the same angle.
c. Determine the minimum deviation angle in the system for a ray having the wavelength λ_{0}.
d. Calculate the wavelength of the ray that penetrates and exits the system along directions parallel to $D C$.

