

Optics – Problem III (7points)

Problem III - Solution

a. The ray with the wavelength λ_0 pass trough the prisms system without refraction on *AC* face at any angle of incidence if :

 $n_1(\lambda_0) = n_2(\lambda_0)$

Because the dependence of refraction indexes of prisms on wavelength has the form :

$$n_{1}(\lambda) = a_{1} + \frac{b_{1}}{\lambda^{2}}$$
(3.1)

$$n_{2}(\lambda) = a_{2} + \frac{b_{2}}{\lambda^{2}}$$
(3.2)

The relation (3.1) becomes:

$$a_1 + \frac{b_1}{\lambda_0^2} = a_2 + \frac{b_2}{\lambda_0^2}$$
(3.3)

The wavelength λ_0 has correspondingly the form:

$$\lambda_0 = \sqrt{\frac{b_1 - b_2}{a_2 - a_1}} \tag{3.4}$$

Substituting the furnished numerical values

$$\lambda_0 = 500 \, nm \tag{3.5}$$

The corresponding common value of indexes of refraction of prisms for the radiation with the wavelength λ_0 is:

$$n_1(\lambda_0) = n_2(\lambda_0) = 1,5$$
 (3.6)

The relations (3.6) and (3.7) represent the answers of question a.

b. For the rays with different wavelength (λ_{red} , λ_0 , λ_{violet}) having the same incidence angle on first prism, the paths are illustrated in the figure 1.1.

Figure 3.1

The draw illustrated in the figure 1.1 represents the answer of question b.

c. In the figure 1.2 is presented the path of ray with wavelength λ_0 at minimum deviation (the angle between the direction of incidence of ray and the direction of emerging ray is minimal).

Figure 3.2

In this situation

$$n_{1}(\lambda_{0}) = n_{2}(\lambda_{0}) = \frac{\sin \frac{\delta_{\min} + A'}{2}}{\sin \frac{A'}{2}}$$
(3.7)

where

 $m(\hat{A}')=30^{\circ}$, as in the figure 1.1 Substituting in (3.8) the values of refraction indexes the result is

$$\sin\frac{\sigma_{\min} + A}{2} = \frac{3}{2} \cdot \sin\frac{A}{2}$$
(3.8)

or

$$\delta_{\min} = 2 \arcsin\left(\frac{3}{2} \cdot \sin\frac{A'}{2}\right) - \frac{A'}{2}$$
(3.9)

Numerically
$$\delta_{\min} \cong 30,7^{\circ}$$

The relation (3.11) represents the answer of question c.

d. Using the figure 1.3 the refraction law on the <i>AD</i> face is	
$\sin i_1 = n_1 \cdot \sin r_1$	(3.11)
The refraction law on the AC face is	
$n_1 \cdot \sin r_1 = n_2 \cdot \sin r_2$	(3.12)

(3.10)

As it can be seen in the figure 1.3 (3.13) $r_2 = A_2$ and (3.14) $i_1 = 30^{\circ}$ Also, (3.15) $r_1 + r_1' = A_1$ Substituting (3.16) and (3.14) in (3.13) it results $n_1 \cdot \sin\left(A_1 - r_1\right) = n_2 \cdot \sin A_2$ (3.16) or $n_1 \cdot (\sin A_1 \cdot \cos r_1 - \sin r_1 \cdot \cos A_1) = n_2 \cdot \sin A_2$ (3.17) Because of (3.12) and (3.15) it results that $\sin r_1 = \frac{1}{2n_1}$ (3.18) and $\cos r_1 = \frac{1}{2n_1} \sqrt{4n_1^2 - 1}$ (3.19) Putting together the last three relations it results $\sqrt{4n_1^2 - 1} = \frac{2n_2 \cdot \sin A_2 + \cos A_1}{\sin A_1}$ (3.20) Because $\hat{A}_{1} = 60^{\circ}$ and $\hat{A}_{2} = 30^{\circ}$ relation (3.21) can be written as $\sqrt{4n_1^2 - 1} = \frac{2n_2 + 1}{\sqrt{3}}$ (3.21) or

$3 \cdot n_1^2 = 1 + n_2 + n_2^2$	(3.22)
Considering the relations (3.1), (3.2) and (3.23) and operating all calculus it	results:
$\lambda^{4} \cdot (3a_{1}^{2} - a_{2}^{2} - a_{2} - 1) + (6a_{1}b_{1} - b_{2} - 2a_{2}b_{2}) \cdot \lambda^{2} + 3b_{1}^{2} - b_{2}^{2} = 0$	(3.23)
Solving the equation (3.24) one determine the wavelength $~\lambda~$ of the ray	that enter the prisms system
having the direction parallel with DC and emerges the prism system having with DC . That is	g the direction again parallel
$\lambda = 1194 nm$	(3.24)
Or	
$\lambda \simeq 1.2 \mu m$	(3.25)

The relation (3.26) represents the answer of question **d**.

Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of Education and Research- Bucharest, Romania Professor Adrian S.DAFINEI,PhD, Faculty of Physics – University of Bucharest, Romania