Atomics - Problem IV (7 points)

Compton scattering

A photon of wavelength λ_{i} is scattered by a moving, free electron. As a result the electron stops and the resulting photon of wavelength λ_{0} scattered at an angle $\theta=60^{\circ}$ with respect to the direction of the incident photon, is again scattered by a second free electron at rest. In this second scattering process a photon with wavelength of $\lambda_{f}=1,25 \times 10^{-10} \mathrm{~m}$ emerges at an angle $\theta=60^{\circ}$ with respect to the direction of the photon of wavelength λ_{0}. Find the de Broglie wavelength for the first electron before the interaction. The following constants are known:
$h=6,6 \times 10^{-34} \mathrm{~J} \cdot s$ - Planck's constant
$m=9,1 \times 10^{-31} \mathrm{~kg}$ - mass oh the electron
$c=3,0 \times 10^{8} \mathrm{~m} / \mathrm{s}-$ speed of light in vacuum

The purpose of the problem is to calculate the values of the speed, momentum and wavelength of the first electron.

To characterize the photons the following notation are used:
Table

	initial photon	photon - after the first scattering	final photon
momentum	\vec{p}_{i}	\vec{p}_{0}	\vec{p}_{f}
energy	E_{i}	E_{0}	E_{f}
wavelength	λ_{i}	λ_{i}	λ_{f}

To characterize the electrons one uses

Table

	first electron before collision	first electron after collision	second electron before collision	Second electron after collision
momentum	$\vec{p}_{1 e}$	0	0	$\vec{p}_{2 e}$
energy	$E_{1 e}$	$E_{0 e}$	$E_{0 e}$	$E_{2 e}$
speed	$\vec{v}_{1 e}$	0	0	$\vec{v}_{2 e}$

