Problem 2

a) First the electron velocity is calculated from the current I:

$$
I=j S=n e_{0} v b c, \quad v=\frac{I}{n e_{0} b c}=25 \mathrm{~m} / \mathrm{s}
$$

The components of the electric field are obtained from the electron velocity. The component in the direction of the current is

$$
\begin{equation*}
E_{\|}=\frac{v}{\mu}=3.2 \mathrm{~V} / \mathrm{m} \tag{0.5p.}
\end{equation*}
$$

The component of the electric field in the direction b is equal to the Lorentz force on the electron divided by its charge:

$$
\begin{equation*}
E_{\perp}=v B=2.5 \mathrm{~V} / \mathrm{m} . \tag{1p.}
\end{equation*}
$$

The magnitude of the electric field is

$$
\begin{equation*}
E=\sqrt{E_{\|}^{2}+E_{\perp}^{2}}=4.06 \mathrm{~V} / \mathrm{m} \tag{0.5p.}
\end{equation*}
$$

while its direction is shown in Fig. 5 (Note that the electron velocity is in the opposite direction with respect to the current.)
(1.5 p.)

Fig. 5
b) The potential difference is

$$
\begin{equation*}
U_{H}=E_{\perp} b=25 \mathrm{mV} \tag{1p.}
\end{equation*}
$$

c) The potential difference U_{H} is now time dependent:

$$
U_{H}=\frac{I B b}{n e_{0} b c}=\frac{I_{0} B_{0}}{n e_{0} c} \sin \omega t \sin (\omega t+\delta) .
$$

The DC component of U_{H} is

$$
\begin{equation*}
\bar{U}_{H}=\frac{I_{0} B_{0}}{2 n e_{0} c} \cos \delta . \tag{3p.}
\end{equation*}
$$

d) A possible experimental setup is-shown in Fig. 6

Fig. 6
(2 p.)

