Problem 2: Electrons in a magnetic field

A beam of electrons emitted by a point source P enters the magnetic field \vec{B} of a toroidal coil (toroid) in the direction of the lines of force. The angle of the aperture of the beam $2 \cdot \alpha_0$ is assumed to be small ($2 \cdot \alpha_0 \ll 1$). The injection of the electrons occurs on the mean radius R of the toroid with acceleration voltage V₀.

Neglect any interaction between the electrons. The magnitude of \vec{B} , B, is assumed to be constant.

- 1. To guide the electron in the toroidal field a homogeneous magnetic deflection field \vec{B}_1 is required. Calculate \vec{B}_1 for an electron moving on a circular orbit of radius R in the torus.
- 2. Determine the value of \vec{B} which gives four focussing points separated by $\pi/2$ as indicated in the diagram.
 - Note: When considering the electron paths you may disregard the curvature of the magnetic field.
- 3. The electron beam cannot stay in the toroid without a deflection field \vec{B}_1 , but will leave it with a systematic motion (drift) perpendicular to the plane of the toroid.
 - a) Show that the radial deviation of the electrons from the injection radius is finite.
 - b) Determine the direction of the drift velocity.
 - Note: The angle of aperture of the electron beam can be neglected. Use the laws of conservation of energy and of angular momentum.

Data:

$$\frac{e}{m} = 1.76 \cdot 10^{11} \,\mathrm{C} \cdot \mathrm{kg}^{-1}; \quad V_0 = 3 \,\mathrm{kV}; \quad R = 50 \,\mathrm{mm}$$