Solution of problem 2:

1. Determination of B:

The vector of the velocity of any electron is divided into components parallel with and perpendicular to the magnetic field \vec{B} :

$$
\begin{equation*}
\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}}_{\|}+\overrightarrow{\mathrm{v}}_{\perp} \tag{1}
\end{equation*}
$$

The Lorentz force $\overrightarrow{\mathrm{F}}=-\mathrm{e} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$ influences only the perpendicular component, it acts as a radial force:

$$
\begin{equation*}
\mathrm{m} \cdot \frac{\mathrm{v}_{\perp}{ }^{2}}{\mathrm{r}}=\mathrm{e} \cdot \mathrm{v}_{\perp} \cdot \mathrm{B} \tag{2}
\end{equation*}
$$

Hence the radius of the circular path that has been travelled is

$$
\begin{equation*}
\mathrm{r}=\frac{\mathrm{m}}{\mathrm{e}} \cdot \frac{\mathrm{v}_{\perp}}{\mathrm{B}} \tag{3}
\end{equation*}
$$

and the period of rotation which is independent of v_{\perp} is

$$
\begin{equation*}
T=\frac{2 \cdot \pi \cdot \mathrm{r}}{\mathrm{v}_{\perp}}=\frac{2 \cdot \pi \cdot \mathrm{~m}}{\mathrm{~B} \cdot \mathrm{e}} \tag{4}
\end{equation*}
$$

The parallel component of the velocity does not vary. Because of $\alpha_{0} \ll 1$ it is approximately equal for all electrons:

$$
\begin{equation*}
\mathrm{v}_{\| 0}=\mathrm{v}_{0} \cdot \cos \alpha_{0} \approx \mathrm{v}_{0} \tag{5}
\end{equation*}
$$

Hence the distance b between the focusing points, using eq. (5), is

$$
\begin{equation*}
\mathrm{b}=\mathrm{v}_{\| 0} \cdot \mathrm{~T} \approx \mathrm{v}_{0} \cdot \mathrm{~T} \tag{6}
\end{equation*}
$$

From the law of conservation of energy follows the relation between the acceleration voltage V_{0} and the velocity v_{0} :

$$
\begin{equation*}
\frac{\mathrm{m}}{2} \cdot \mathrm{v}_{0}{ }^{2}=\mathrm{e} \cdot \mathrm{~V}_{0} \tag{7}
\end{equation*}
$$

Using eq. (7) and eq. (4) one obtains from eq. (6)

$$
\begin{equation*}
\mathrm{b}=\frac{2 \cdot \pi}{\mathrm{~B}} \cdot \sqrt{2 \cdot \frac{\mathrm{~m}}{\mathrm{e}} \cdot \mathrm{~V}_{0}} \tag{8}
\end{equation*}
$$

and because of $\mathrm{b}=\frac{2 \cdot \pi \cdot \mathrm{R}}{4}$ one obtains

$$
\begin{equation*}
\mathrm{B}=\frac{4}{\mathrm{R}} \cdot \sqrt{2 \cdot \frac{\mathrm{~m}}{\mathrm{e}} \cdot \mathrm{~V}_{0}}=1.48 \cdot 10^{-2} \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \tag{9}
\end{equation*}
$$

2. Determination of B_{1} :

Analogous to eq. (2)

$$
\begin{equation*}
\mathrm{m} \cdot \frac{\mathrm{v}_{0}^{2}}{\mathrm{R}}=\mathrm{e} \cdot \mathrm{v}_{0} \cdot \mathrm{~B}_{1} \tag{10}
\end{equation*}
$$

must hold.
From eq. (7) follows

$$
\begin{equation*}
\mathrm{B}_{1}=\frac{1}{\mathrm{R}} \cdot \sqrt{2 \cdot \frac{\mathrm{~m}}{\mathrm{e}} \cdot \mathrm{~V}_{0}}=0.37 \cdot 10^{-2} \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \tag{11}
\end{equation*}
$$

3. Finiteness of r_{1} and direction of the drift velocity

In the magnetic field the lines of force are circles with their centres on the symmetry axis (z-axis) of the toroid.

In accordance with the symmetry of the problem, polar coordinates r and φ are introduced into the plane perpendicular to the z -axis (see figure below) and the occurring vector quantities (velocity, magnetic field \vec{B}, Lorentz force) are divided into the corresponding components.

Since the angle of aperture of the beam can be neglected examine a single electron injected tangentially into the toroid with velocity v_{0} on radius R .

In a static magnetic field the kinetic energy is conserved, thus

$$
\begin{equation*}
E=\frac{m}{2}\left(v_{r}^{2}+v_{\varphi}^{2}+v_{z}^{2}\right)=\frac{m}{2} v_{0}^{2} \tag{12}
\end{equation*}
$$

The radial points of inversion of the electron are defined by the condition

$$
\mathrm{v}_{\mathrm{r}}=0
$$

Using eq. (12) one obtains

$$
\begin{equation*}
\mathrm{v}_{0}{ }^{2}=\mathrm{v}_{\varphi}{ }^{2}+\mathrm{v}_{\mathrm{z}}{ }^{2} \tag{13}
\end{equation*}
$$

Such an inversion point is obviously given by

$$
r=R \cdot\left(v_{\varphi}=v_{0}, v_{r}=0, v_{z}=0\right)
$$

To find further inversion points and thus the maximum radial deviation of the electron the components of velocity v_{φ} and v_{z} in eq. (13) have to be expressed by the radius.
v_{φ} will be determined by the law of conservation of angular momentum. The Lorentz force obviously has no component in the φ - direction (parallel to the magnetic field). Therefore it cannot produce a torque around the z-axis. From this follows that the
z -component of the angular momentum is a constant, i.e. $\mathrm{L}_{\mathrm{z}}=\mathrm{m} \cdot \mathrm{v}_{\varphi} \cdot \mathrm{r}=\mathrm{m} \cdot \mathrm{v}_{0} \cdot \mathrm{R}$ and therefore $\mathrm{v}_{\varphi}=\mathrm{v}_{0} \cdot \frac{\mathrm{R}}{\mathrm{r}}$
v_{z} will be determined from the equation of motion in the z -direction. The z -component of the Lorentz force is $\mathrm{F}_{\mathrm{z}}=-\mathrm{e} \cdot \mathrm{B} \cdot \mathrm{v}_{\mathrm{r}}$. Thus the acceleration in the z -direction is

$$
\begin{equation*}
\mathrm{a}_{\mathrm{z}}=-\frac{\mathrm{e}}{\mathrm{~m}} \cdot \mathrm{~B} \cdot \mathrm{v}_{\mathrm{r}} . \tag{15}
\end{equation*}
$$

That means, since B is assumed to be constant, a change of v_{z} is related to a change of r as follows:

$$
\Delta \mathrm{v}_{\mathrm{z}}=-\frac{\mathrm{e}}{\mathrm{~m}} \cdot \mathrm{~B} \cdot \Delta \mathrm{r}
$$

Because of $\Delta r=r-R$ and $\Delta v_{z}=v_{z}$ one finds

$$
\begin{equation*}
\mathrm{v}_{\mathrm{z}}=-\frac{\mathrm{e}}{\mathrm{~m}} \cdot \mathrm{~B} \cdot(\mathrm{r}-\mathrm{R}) \tag{16}
\end{equation*}
$$

Using eq. (14) and eq. (15) one obtains for eq. (13)

$$
\begin{equation*}
1=\left(\frac{\mathrm{R}}{\mathrm{r}}\right)^{2}+\mathrm{A}^{2} \cdot\left(\frac{\mathrm{r}}{\mathrm{R}}-1\right)^{2} \tag{17}
\end{equation*}
$$

where $A=\frac{e}{m} \cdot B \cdot \frac{R}{v_{0}}$
Discussion of the curve of the right side of eq. (17) gives the qualitative result shown in the following diagram:

Hence r_{1} is finite. Since $R \leq r \leq r_{1}$ eq. (16) yields $\mathrm{v}_{\mathrm{z}}<0$. Hence the drift is in the direction of the negative z -axis.

