Solution

2.1

conservation of energy:
$M \cdot g \cdot s=\frac{1}{2} \cdot I_{A} \cdot \omega^{2}$
where ω is the angular speed of the wheel and I_{A} is the moment of inertia about the axis through A .

Note: If we would take the moment of inertia about S instead of A we would have
$M \cdot g \cdot s=\frac{1}{2} \cdot I_{s} \cdot \omega^{2}+\frac{1}{2} \cdot m \cdot v^{2}$
where v is the speed of the centre of mass along the vertical.
This equation is the same as the above one in meanings since
$I_{A}=I_{S}+M \cdot r^{2}$ and $I_{S}=M \cdot R^{2}$
From (1) we get

$$
\omega=\sqrt{\frac{2 \cdot M \cdot g \cdot S}{I_{A}}}
$$

substitute

$$
I_{A}=\frac{1}{2} \cdot M \cdot r^{2}+M \cdot R^{2}
$$

$\omega=\sqrt{\frac{2 \cdot g \cdot s}{r^{2}+\frac{R^{2}}{2}}}$
Putting in numbers we get

$$
\omega=\sqrt{\frac{2 \cdot 9,81 \cdot 0,50}{9 \cdot 10^{-6}+\frac{1}{2} \cdot 36 \cdot 10^{-4}}} \approx 72,4 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

2.2

Kinetic energy of linear motion of the centre of mass of the wheel is
$E_{T}=\frac{1}{2} \cdot M \cdot v^{2}=\frac{1}{2} \cdot M \cdot \omega^{2} \cdot r^{2}=\frac{1}{2} \cdot 0,40 \cdot 72,4^{2} \cdot 9 \cdot 10^{-6}=9,76 \cdot 10^{-3} \mathrm{~J}$
Potential energy of the wheel
$E_{p}=M \cdot g \cdot s=0,40 \cdot 9,81 \cdot 0,50=1,962 \mathrm{~J}$
Rotational kinetic energy of the wheel
$E_{R}=\frac{1}{2} \cdot I_{S} \cdot \omega^{2}=\frac{1}{2} \cdot 0,40 \cdot 1,81 \cdot 10^{-3} \cdot 72,4^{2}=1,899 \mathrm{~J}$

$$
\frac{E_{T}}{E_{R}}=\frac{9,76 \cdot 10^{-3}}{1,899}=5,13 \cdot 10^{-3}
$$

2.3

Let $\frac{T}{2}$ be the tension in each string.
Torque τ which causes the rotation is given by $\quad \tau=M \cdot g \cdot r=I_{A} \cdot \alpha$
where α is the angular acceleration $\quad \alpha=\frac{M \cdot g \cdot r}{I_{A}}$
The equation of the motion of the wheel is \quad M.g $-T=$ M.a
Substituting $a=\alpha \cdot r$ and $I_{A}=\frac{1}{2} \cdot M \cdot r^{2}+M \cdot R^{2}$ we get
$T=M \cdot g+\frac{M \cdot g \cdot r^{2}}{\frac{1}{2} \cdot M \cdot R^{2}+M \cdot r^{2}}=M \cdot g \cdot\left(1+\frac{2 \cdot r^{2}}{R^{2}+2 \cdot r^{2}}\right)$
Thus for the tension $\frac{T}{2}$ in each string we get

$$
\begin{gathered}
\frac{T}{2}=\frac{M \cdot g}{2} \cdot\left(1+\frac{2 \cdot r^{2}}{R^{2}+2 \cdot r^{2}}\right)=\frac{0,40 \cdot 9,81}{2} \cdot\left(1+\frac{2 \cdot 9 \cdot 10^{-6}}{3,6 \cdot 10^{-3}+2 \cdot 9 \cdot 10^{-6}}\right)=1,96 \mathrm{~N} \\
\frac{T}{2}=1,96 \mathrm{~N}
\end{gathered}
$$

2.4

Fig 19.7

After the whole length of the strings is completely unwound, the wheel continues to rotate about A (which is at rest for some interval to be discussed). Let $\dot{\Phi}$ be the angular speed of the centre of mass about the axis through A. The equation of the rotational motion of the wheel about A may be written as $|\tau|=I_{A} \cdot \ddot{\Phi}$,
where τ is the torque about $\mathrm{A}, \mathrm{I}_{\mathrm{A}}$ is the moment of inertia about the axis A and $\ddot{\Phi}$ is the angular acceleration about the axis through A.
Hence $\quad M \cdot g \cdot r \cdot \cos \Phi=I_{A} \cdot \ddot{\phi}$
and

$$
\ddot{\phi}=\frac{M \cdot g \cdot r \cdot \cos \Phi}{I_{A}}
$$

Multiplied with $\dot{\Phi}$ gives:
$\dot{\Phi} \cdot \ddot{\Phi}=\frac{\mathrm{M} \cdot \mathrm{g} \cdot \mathrm{r} \cdot \cos \Phi \cdot \dot{\Phi}}{\mathrm{I}_{\mathrm{A}}} \quad$ or $\quad \frac{1}{2} \cdot \frac{\mathrm{~d}(\dot{\Phi})^{2}}{\mathrm{dt}}=\frac{\mathrm{M} \cdot \mathrm{g} \cdot \mathrm{r} \cdot \cos \Phi}{\mathrm{I}_{\mathrm{A}}} \cdot \frac{\mathrm{d} \Phi}{\mathrm{dt}}$

IPHO-1988 Bad Ischl / Austria Problems and Solutions

this gives
$(\dot{\Phi})^{2}=\frac{2 \cdot \mathrm{M} \cdot \mathrm{g} \cdot \mathrm{r} \cdot \sin \Phi}{\mathrm{I}_{\mathrm{A}}}+\mathrm{C}$
[$\mathrm{C}=$ arbitrary constant]

If $\Phi=0 \quad[\mathrm{~s}=\mathrm{H}]$ than is $\dot{\Phi}=\omega$
That gives $\omega=\frac{2 \cdot M \cdot g \cdot H}{I_{A}}$ and therefore $C=\frac{2 \cdot M \cdot g \cdot H}{I_{A}}$
Putting these results into the equation above one gets
$\dot{\Phi}=\omega=\sqrt{\frac{2 \cdot M \cdot g \cdot H \cdot \sin \Phi}{I_{A}} \cdot\left(1+\frac{r}{H}\right)}$

For $\frac{r}{H} \lll 1$ we get:
$\omega=\omega_{\text {MAX }}^{\prime}=\sqrt{\frac{2 \cdot \mathrm{M} \cdot \mathrm{g} \cdot \mathrm{H}}{\mathrm{I}_{\mathrm{A}}}}$
and
$v=r \cdot \omega_{\text {MAX }}^{\prime}=r \cdot \sqrt{\frac{2 \cdot M \cdot g \cdot H}{I_{A}}}$

Fig. 19.8

Component of the displacement along x -axis is $\mathrm{x}=\mathrm{r} \cdot \sin \Phi-\mathrm{r}$ along y -axis is $\mathrm{y}=\mathrm{r} \cdot \cos \Phi-\mathrm{r}$

IPHO-1988 Bad Ischl / Austria
Problems and Solutions

Fig. 19.9

IPHO-1988 Bad Ischl / Austria
 Problems and Solutions

2.5

Maximum tension in each string occurs $\dot{\Phi}=\omega_{\text {MAX }}^{\prime}$
The equation of the motion is

$$
\mathrm{T}_{\operatorname{MAX}}-\mathrm{M} \cdot \mathrm{~g}=\mathrm{M} \cdot\left(\omega_{\operatorname{MAX}}^{\prime}\right)^{2} \cdot \mathrm{r}
$$

Putting in $T=20 \mathrm{~N}$ and $\omega_{M A X}^{\prime}=\sqrt{\frac{2 \cdot \mathrm{M} \cdot \mathrm{g} \cdot \mathrm{S}}{\mathrm{I}_{\mathrm{A}}}}$ (where s is the maximum length of the strings supporting the wheel without breaking) and $I_{A}=M \cdot\left(\frac{R^{2}}{2}+r^{2}\right)$ the numbers one gets:
$20=0,40 \cdot 9,81 \cdot\left(1+\frac{4 \cdot 3 \cdot 10^{-3} \cdot \mathrm{~s}}{36 \cdot 10^{-4}+2 \cdot 9 \cdot 10^{-6}}\right) \quad$ This gives: $\quad \mathrm{s}=1,24 \mathrm{~m}$
The maximum length of the strings which support maximum tension without breaking is
$1,24 \mathrm{~m}$.

