
c) When an atom emits light, its direction of motion changes by ϕ  from initial direction. Calculate ϕ. 
d) Find the maximum possible velocity decrease  ∆v  for a given frequency. 
e) What is the approximate number N  of absorption-emission events necessary to reduce the velocity of 

an atom from is initial value vo 
 -found in question a) above- almost to zero? Assume the atom travels in a straight line. 
f)Find the time t that the process in question e takes. Calculate the distance ∆S an atom travels in this 

time. 
 Data 
  E = 3,36⋅10-19 J 
  Γ = 7,0⋅10-27 J 
  c = 3⋅108 ms-1 
  mp = 1,67⋅10-27 kg 
  h = 6,62⋅10-34 Js 
  k = 1,38⋅10-23 JK-1 
where c is speed of light, h is Planck’s constant, k is the Boltzmann constant, and mp is the mass of 
proton. 
 

T H E O R E T I C A L    P R O B L E M S.    S O L U T I O N S 
 
Solution Problem 1 
a) Calculation of the velocity at the instant before impact 
Equating the potential gravitational energy to the kinetic energy at the instant before impact we can arrive 
at the pre-impact velocity v0: 
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2
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              from which we may solve for v0 as follows: 
 

             V0  =  gh2           (2)  

b) Calculation of the vertical component of the velocity at the instant after impact  
Let v2x and v2y be the horizontal and vertical components, respectively, of the velocity of the mass center 
an instant after impact. The height attained in the vertical direction will be αh and then:  

2
2yv  =  hg2 α            (3)   

from which, in terms of α (or the restitution coefficient  c  = α ):  

v2y  =  hg2 α  =  cv0          (4)   

c) General equations for the variations of linear and angular momenta in the time interval of the  
Impact     

 
    Considering that the linear impulse of the forces is equal to the variation of the linear momentum and 
that the angular impulse of the torques is equal to the variation of the angular momentum, we have: 
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Where Ix, Iy and Iθ are the linear and angular impulses of the acting forces and ω2  is the angular velocity 
after impact. The times t1 and t2 correspond to the beginning and end of impact.   
 
Variants   
At the beginning of the impact the ball will always be sliding because it has a certain angular velocity ω0. 
There are, then, two possibilities: 
 
I. The entire impact takes place without the friction being able to spin the ball enough for it to stop at the 

contact point and go into pure rolling motion.    
 
II. For a certain time  t  ∈  (t1, t2), the point that comes into contact with the floor has a velocity equal to 

zero and from  that moment the friction is zero. Let us look at each case independently. 
 
Case  I 
In this variant, during the entire moment of impact, the ball is sliding and the friction relates to the normal 
force as: 
fr  =  µ kN(t)           (8)  
Substituting (8) in relations (6) and (7), and using (5), we find that: 
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 and: 
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 which can give us the horizontal component of the velocity v2x and the final angular velocity in the form: 

       V2x  =  µ k (1 + c) gh2          (11)   
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With this we have all the basic magnitudes in terms of data. The range of validity of the solution under 
consideration may be obtained from (11) and (12). This solution will be valid whenever at the end of the 
impact the contact point has a velocity in the direction of the negative x. That is, if: 
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          so, for angular velocities below this value, the solution is not valid. 
 
Case  II 
In this case, rolling is attained for a time t between the initial time t1 and the final time t2 of the impact. 
Then the following relationship should exist between the horizontal component of the velocity v2x and the 
final angular velocity: 
   ω2R  =  v2x           (14) 
Substituting  (14) and  (6) in  (7), we get that: 
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 which can be solved for the final values: 

    V2x  =  

R

I
mR

I

+

0ω
  =  

ImR

RI

+2
0ω

  =  
7

2
ω0R       (16) 

 and: 

    ω2  =  
ImR

I

+2
0ω

  =  
7

2
 ω0         (17) 

Calculation of the tangents of the angles  
 
Case  I  
For  tan θ we have, from (4) and (11), that:  
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 i.e., the angle is independent of ω0. 
 
Case  II 
Here (4) and (16) determine for  tan θ  that: 
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then  (18) and (19) give the solution (fig. 1.3). 
 

 
 
We see that θ  does not depend on ω o if  ω 0  >  ω 0 min; where  ω 0 min is given as: 
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Calculation of the distance to the second point of impact  
 
Case  I 
The rising and falling time of the ball is: 
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The distance to be found, then, is; 
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which is independent of  ω 0. 
 
Case  II 
In this case, the rising and falling time of the ball will be the one given in (21). Thus the distance we are 
trying  to find may be calculated by multiplying tv by the velocity  v2x so that: 
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Thus, the distance to the second point of impact of the ball increases linearly with  ω 0. 
 
Marking Code 
The point value of each of the sections is: 
                1.a        2 points 
                1.b        1.5 points 
                1.c        2 points 
 
                2.a        2 points 
                2.b        1.5 points 
                3           1 point    
 
Solution Problem  2  
Question   a: 
Let’s call S the lab (observer) frame of reference associated with the observer that sees the loop moving 
with velocity v; S’ to the loop frame of reference (the x’ axis of this system will be taken in the same 
direction as  v

r
; y’ in the direction of side DA and  z’ axis, perpendicular to the plane of the loop). The 

axes of  S are parallel to those of  S’ and the origins of both systems coincide at t  =  0. 
 
1. Side  AB  
 
  ''

ABS   will be a reference frame where the moving balls of side AB are at rest. Its axes are parallel        

   to those of  S  and  'S . ''S has a velocity  u  with respect to  'S . 

  According to the Lorentz contraction, the distance  a, between adjacent balls of AB, measured in ''S , is: 


