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Calculation of the distance to the second point of impact  
 
Case  I 
The rising and falling time of the ball is: 

    t v  =  2
g

v y2
   =  

g

ghc 22
  =  2c

g

h2
        (21) 

The distance to be found, then, is; 
 

    dI  =  v2xtv   =  µ k (1+ c) 
g

h
cgh

2
22         

    d1 =  4µ k(1+ c ) ch          (22) 
which is independent of  ω 0. 
 
Case  II 
In this case, the rising and falling time of the ball will be the one given in (21). Thus the distance we are 
trying  to find may be calculated by multiplying tv by the velocity  v2x so that: 
 

   dII  =  v2xtv  =  
g

h
c

ImR

I 2
2

2
0

+
ω

     =
g

hRc 2

2

5
1

2 0
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ω
 

    dII  =  0

2

7

4 ωR
g

h
c  

Thus, the distance to the second point of impact of the ball increases linearly with  ω 0. 
 
Marking Code 
The point value of each of the sections is: 
                1.a        2 points 
                1.b        1.5 points 
                1.c        2 points 
 
                2.a        2 points 
                2.b        1.5 points 
                3           1 point    
 
Solution Problem  2  
Question   a: 
Let’s call S the lab (observer) frame of reference associated with the observer that sees the loop moving 
with velocity v; S’ to the loop frame of reference (the x’ axis of this system will be taken in the same 
direction as  v

r
; y’ in the direction of side DA and  z’ axis, perpendicular to the plane of the loop). The 

axes of  S are parallel to those of  S’ and the origins of both systems coincide at t  =  0. 
 
1. Side  AB  
 
  ''

ABS   will be a reference frame where the moving balls of side AB are at rest. Its axes are parallel        

   to those of  S  and  'S . ''S has a velocity  u  with respect to  'S . 

  According to the Lorentz contraction, the distance  a, between adjacent balls of AB, measured in ''S , is: 



               ar  =  

2

2

1
c

u

a

−

          (1) 

 
(This result is valid for the distance between two adjacent balls that are in one of any sides, if a, is  
measured in the frame of reference in which they are at rest).  
 
    Due to the relativistic sum of velocities, an observer in  S  sees the balls moving in AB with velocity: 

2
1

c

uv
uv

uAB

+

+=           (2) 

So, because of Lorentz  contraction, this observer will see the following distance between balls: 

r
AB

AB a
c

u
a

2

2

1−=          (3) 

Substituting (1) and (2) in (3) 

a

c

uv
t

v

aAB

2

2

2

1

1

+

−
=          (4) 

2. Side CD 
For the observer in S, the speed of balls in CD is: 

2
1

c

uv
uv

uCD

−

−=           (5) 

From the Lorentz contraction: 

r
CD

CD a
c

u
a

2

2

1−=          (6) 

Substituting (1) and (5) in (6) we obtain: 

a

c

uv
c

v

aCD
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2
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1

1

−

−
=          (7) 

 
3. Side DA 

In system S’, at time 'ot , let a ball be at 0'
1

'
1

'
1 === zyx . At the same time the nearest neighbour to 

this ball will be in the position ayx == '
2

'
2 ,0 , .0'

2 =z  
The space-time coordinates of this balls, referred to system S, are given by the Lorentz transformation: 
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2
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y=y’ 
z=z’           (8) 
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Accordingly, we have for the first ball in S: 
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     (9) 
 
And for the second: 
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c
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1
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As t1= t2, the distance between two balls in S will be given by: 
aDA=(x2-x1)

2 + (y2 – y1)
2 + (z2-z1)

2        (11) 
So: 
aAD=a           (12) 
4. Side BC 
If we repeat the same procedure as above, we can obtain that: 
aBC=a 
           (13) 
Question b: 
The charge of the wire forming any of the sides, in the frame of reference associated with the loop can be 
calculated as: 

q
a
L

Qwire −=           (14) 

Because L/a is the number of balls in that side. Due to the fact that the charge in invariant, the same 
charge can be measured in each side of the wire in the lab (observer) frame of reference. 
1. Side AB 
The charge corresponding to balls in side AB is, in the lab frame of reference: 

q
a

c
v

1L
Q

AB

2

2

balls ,AB −
−

=         (15) 

This is obtained from the multiplication of the number of balls in that side multiplied by the (invariant) 
charge of one ball. The numerator of the first factor in the right side of equation (15) is the contracted 
distance measured by the observer and the denominator is the spacing between balls in that side. 
Replacing in (15) equation (4), we obtain: 

a
Lq

c
uv1

Q
2balls ,AB 







 +=         (16) 

Adding (14) and (16) we obtain for the total charge of this side: 

q
a
L

c
uv

Q
2AB =           (17) 

2. Side CD 
Following the same procedure we have that: 

a
Lq

c
uv

1q
a

c
v

1
Q

2
CD

2

2

balls ,CD 






 −=−
−

=       (18) 

And adding (14) and (18) we obtain: 

q
a
L

c
uv

Q
2CD −=          (19) 

The length of these sides measured by the observer in S is L and the distance between balls is a, so: 

a
Lq

QQ balls ,DAballs ,BC ==         (20) 

Adding (14) and (20) we obtain: 



QBC = 0           (21.1) 
QDA=0           (21.2) 
Question c: 
There is electric force acting into the side AB equal to: 

→→→








== Eq
a
L

c
uv

EQF
2ABAB         (22) 

 
and the electric force acting into the side CD is: 

→→→








−== Eq
a
L

c
uv

EQF
2CDCD         (23) 

FCD and F, form a force pair. So, from the expression for the torque for a force pair we have that (fig. 2.2): 

θ=
→

sinL FM AB          (24) 

And finally: 

θ=
→

sinEq
a
L

c
uv

M
2

2
         (25) 

 
          Fig 2.2 

Question d: 
Let’s call VAB and VCD the electrostatic in the points of sides AB and CD respectively. Then: 
W=VABQAB + VCDQCD         (26) 

Let’s fix cero potential (V=0) in a plane perpendicular to 
→
E  and in an arbitrary distance R from side AB 

(fig. 2.3). 

 
Figure 2.3 

Then: 
W=-ERQAB – E(R+Lcosθ)QCD        (27) 
But QCD=-QAB, so: 
W=-ELQABcosθ          (28) 



Substituting (17) in (28) we obtain: 

θ= cos
ac
qEuvL

W
2

2

         (29) 

Marking Code 
Grading for questions will be as follows: 
a)4,5 points. 
b)2,0 points. 
c)1,5 points. 
d)2,0 points. 
These points are distributed in questions in the following way: 
Question a: 
1. Obtaining expressions (4) and (7) correctly: 3,0 points. 
    Only one of them correct: 2,0 points. 
2. Obtaining expressions (12) and (13) correctly including the necessary calculations to arrive to this 

results: 1,5 points. 
    Only one of them correct: 1,0 points. 
If the necessary calculations are not present: 0,8 point for both (12) and (13) correct; 0,5 points for only 
one of them correct. 
Question b: 
1. Obtaining expressions (17) and (19) correctly: 1,0 point. 
    Only one of them correct: 1,0 point. 
2. Obtaining expressions (21.1) and (21.2) correctly: 0,5 point. 
    Only one them correct: 0,5 point. 
Question d: 
1. Obtaining expression (29) correctly: 2,0 points. 
When the modulus of a vector is not present where necessary, the student will loose 0,2 points. When the 
modulus of q is not present where necessary the student will loose 0,1 points. 
 
Solution Problem  3 
Question a: 
The velocity vo of the atoms whose kinetic energy is the mean of the atoms on issuing from the collimator 
is given is given by: 

m
kT3

vkT
2
3

mv
2
1

o
2
o =⇒=        (1) 

 

s/m  
1067,123

101038,13
v

27

323

o −

−

⋅⋅
⋅⋅⋅=  

vo ≈ 1,04⋅103 m/s because: 
m ≈ 23 mp          (2) 
Since this velocity is much smaller than c, vo<< c, we may disregard relativistic effects. 
Light is made up of photons with energy hν and momentum hν/c. 
In the reference system of the laboratory, the energy and momentum conservation laws 
applied to the absorption process imply that: 
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vvvmv
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2
1 −ν=−+⇒−ν=−  

hν/c<<mvo. Then v1 ≈ vo and this implies mvo∆v1 = hν = E, where we assume that  
v1 + vo ≈ 2vo 
Combining these expressions: 


