Solution Problem 3

Question a:

The velocity v_{o} of the atoms whose kinetic energy is the mean of the atoms on issuing from the collimator is given is given by:
$\frac{1}{2} m v_{o}^{2}=\frac{3}{2} k T \Rightarrow v_{o}=\sqrt{\frac{3 k T}{m}}$
$v_{o}=\sqrt{\frac{3 \cdot 1,38 \cdot 10^{-23} \cdot 10^{3}}{23 \cdot 1,67 \cdot 10^{-27}}} \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{o}} \approx 1,04 \cdot 10^{3} \mathrm{~m} / \mathrm{s}$ because:
$\mathrm{m} \approx 23 \mathrm{~m}_{\mathrm{p}}$
Since this velocity is much smaller than c , $\mathrm{v}_{\mathrm{o}} \ll \mathrm{c}$, we may disregard relativistic effects.
Light is made up of photons with energy $\mathrm{h} v$ and momentum hv / c.
In the reference system of the laboratory, the energy and momentum conservation laws applied to the absorption process imply that:
$\frac{1}{2} m v_{o}^{2}+h v=\frac{1}{2} m v_{1}^{2}+E ; m v_{o}-\frac{h v}{c}=m v_{1} \Rightarrow \Delta v_{1}=v_{1}-v_{o}=\frac{-h v}{m c}$
$\frac{1}{2} m\left(v_{1}^{2}-v_{o}^{2}\right)=h v-E \Rightarrow \frac{1}{2} m\left(v_{1}+v_{o}\right)\left(v_{1}-v_{0}\right)=h v-E$
$\mathrm{hv} / \mathrm{c} \ll \mathrm{mv}_{0}$. Then $\mathrm{v}_{1} \approx \mathrm{v}_{\mathrm{o}}$ and this implies $\mathrm{mv}_{0} \Delta \mathrm{v}_{1}=\mathrm{h} v=\mathrm{E}$, where we assume that $\mathrm{v}_{1}+\mathrm{v}_{\mathrm{o}} \approx 2 \mathrm{v}_{\mathrm{o}}$
Combining these expressions:
$v=\frac{\frac{E}{h}}{1+\frac{v_{0}}{c}}$
and:
$\Delta \mathrm{v}_{1}=-\frac{\mathrm{E}}{\mathrm{mc}} \frac{1}{1+\frac{\mathrm{v}_{0}}{\mathrm{c}}}$
And substituting the numerical values:
$v \approx 5,0 \cdot 10^{14} \mathrm{~Hz} \quad \Delta \mathrm{v}_{1} \approx-3,0 \cdot 10^{-2} \mathrm{~m} / \mathrm{s}$
If we had analyzed the problem in the reference system that moves with regard to the laboratory at a velocity v_{o}, we would have that:
$\frac{1}{2} m\left(v_{1}-v_{2}\right)^{2}+E=h v$
Where $v=\frac{v^{\prime}}{1+\frac{v_{0}}{c}}$ is the frequency of the photons in the laboratory
system. Disregarding Δv_{1}^{2} we get the same two equations above.
The approximations are justifiable because:
$-\frac{\left|\Delta \mathrm{v}_{1}\right|}{\mathrm{v}_{0}} \sim 10^{-4}$
Then $\mathrm{v}_{1}+\mathrm{v}_{\mathrm{o}}=2 \mathrm{v}_{\mathrm{o}}-\Delta \mathrm{v}_{1} \approx 2 \mathrm{v}_{\mathrm{o}}$
Question b:
For a fixed v :
$v_{0}=c\left(\frac{E}{h \nu}-1\right)$
if E has an uncertainty Γ, v_{o} would have an uncertainty:
$\Delta v_{0}=\frac{c \Gamma}{h v}=\frac{c \Gamma\left(1+\frac{v_{0}}{c}\right)}{E} \approx \frac{c \Gamma}{E}=6,25 \mathrm{~m} / \mathrm{s}$
so the photons are absorbed by the atoms which velocities are in the interval $\left(\mathrm{v}_{\mathrm{o}}-\frac{\Delta \mathrm{v}_{0}}{2}, \mathrm{v}_{\mathrm{o}}+\frac{\Delta \mathrm{v}_{0}}{2}\right)$
Question c:
The energy and momentum conservation laws imply that:
$\frac{1}{2} m v_{1}^{2}+E=\frac{1}{2} m v_{1}^{\prime 2}+h v^{\prime}$
($v^{\prime}-$ is the frequency of emitted photon)
$m v_{1}=m v^{\prime}{ }_{1} \cos \varphi+\frac{h v^{\prime}}{c} \cos \theta$
$0=m v^{\prime}{ }_{1} \sin \varphi-\frac{h v^{\prime}}{c} \sin \theta$
The deviation φ of the atom will be greatest when $\theta=\frac{\pi}{2}$, then:
$m v_{1}=m v^{\prime}{ }_{1} \cos \varphi_{m} ; \frac{h v^{\prime}}{c}=m v^{\prime}{ }_{1} \sin \varphi_{m} \Rightarrow \tan \varphi_{m}=\frac{h v^{\prime}}{m v_{1} c}$
since $v^{\prime} \approx v$:
$\tan \varphi_{\mathrm{m}} \approx \frac{\mathrm{E}}{\mathrm{mv} \mathrm{v}_{1} \mathrm{c}}$
$\varphi_{\mathrm{m}}=\operatorname{arctg} \frac{\mathrm{E}}{\mathrm{mvc}} \Rightarrow \varphi_{\mathrm{m}} \approx 5 \cdot 10^{-5} \mathrm{rad}$
Question d:
As the velocity of the atoms decreases, the frequency needed for resonant absorption increases according to:
$v=\frac{\frac{E}{h}}{1+\frac{v_{0}}{c}}$
When the velocity is $\mathrm{v}_{\mathrm{o}}=\Delta \mathrm{v}$, absorption will still be possible in the lower part of the level if:
$h v=\frac{E-\frac{\Gamma}{2}}{1+\frac{v_{0}-\Delta v}{c}}=\frac{E}{1+\frac{v_{0}}{c}} \Rightarrow \Delta v=\frac{c \Gamma}{2 E}\left(1+\frac{v_{0}}{c}\right)$
$\Delta \mathrm{v}=3,12 \mathrm{~m} / \mathrm{s}$
Question e:
If each absorption-emission event varies the velocity as $\Delta v_{1} \approx \frac{E}{m c}$, decreasing velocity from v_{o} to almost zero would require N events, where:
$N=\frac{v_{0}}{\left|\Delta v_{1}\right|} \approx \frac{\mathrm{mcv}_{0}}{E} \Rightarrow N \approx 3,56 \cdot 10^{4}$
Question f:
If absorption is instantaneous, the elapsed time is determined by the spontaneous emission. The atom remains in the excited state for a certain time, $\tau=\frac{h}{\Gamma}$, then:
$\Delta t=N \tau=\frac{N h}{\Gamma}=\frac{\mathrm{mchv}_{0}}{\Gamma \mathrm{E}} \Rightarrow \Delta \mathrm{t} \approx 3,37 \cdot 10^{-9} \mathrm{~s}$
The distance covered in that time is $\Delta \mathrm{S}=\mathrm{v}_{\mathrm{o}} \Delta \mathrm{t} / 2$. Assuming that the motion is uniformly slowed down:
$\Delta S=\frac{1}{2} \operatorname{mchv}^{2} \Gamma E \Rightarrow \Delta S \approx 1,75 \mathrm{~m}$
Marking Code

a) Finding	v_{o}	1 pt	Total 3 pt
".	v	1 pt	
b) ".	$\Delta \mathrm{v}_{1}$	1 pt	
	$\Delta \mathrm{v}_{\mathrm{o}}$	$1,5 \mathrm{pt}$	Total $1,5 \mathrm{pt}$

