

Theoretical Problem 2-Solution

1) For $t=t_{1}$ to t_{3}

Since $r=0$, the voltage across the magnet $V_{M}=L d I_{1} / d t=0$, therefore,

$$
\begin{gathered}
I_{1}=I_{1}\left(t_{1}\right)=\frac{1}{2} I_{0} \\
I_{2}=I-I_{1}=I-\frac{1}{2} I_{0} .
\end{gathered}
$$

For $t=t_{3}$ to t_{4}
Since $I_{2}=0$ at $t=t_{3}$, and I is kept at $\frac{1}{2} I_{0}$ after
$t=t_{3}, V_{M}=I_{2} r_{n}=0$, therefore, I_{1} and I_{2} will not change.

$$
\begin{gathered}
I_{1}=\frac{1}{2} I_{0} ; \\
I_{2}=0
\end{gathered}
$$

These results are shown in Fig. 6.

Fig. 6a

6 c

2) For $t=0$ to $t=1 \mathrm{~min}$:

Since $r=0, V_{M}=L d I_{1} / d t=0$

$$
\begin{aligned}
& I_{1}=I_{1}(0)=0 \\
& I_{2}=I-I_{1}=0.5 \mathrm{~A} .
\end{aligned}
$$

At $t=1 \mathrm{~min}, r$ suddenly jumps from O to r_{n}, I will drop from E / R to $E /\left(R+r_{n}\right)$ instantaneously, because I_{1} can not change abruptly due to the inductance of the magnet coil. For $E / R=0.5 \mathrm{~A}, R=7.5 \Omega$ and $R_{n}=5 \Omega$. I will drop to 0.3 A .

For $t=1 \mathrm{~min}$ to 2 min :
I, I_{1} and I_{2} gradually approach their steady values:

$$
\begin{aligned}
& I=\frac{E}{R}=0.5 \mathrm{~A}, \\
& I_{1}=I=0.5 \mathrm{~A} \\
& I_{2}=0 .
\end{aligned}
$$

The time constant

$$
\tau=\frac{L\left(R+r_{n}\right)}{R r_{n}} .
$$

When $L=10 \mathrm{H}, R=7.5 \Omega$ and $r_{n}=5 \Omega, \tau=3 \mathrm{sec}$.
For $t=2 \mathrm{~min}$ to 3 min :
Since $r=0, I_{1}$ and I_{2} will not change, that is

$$
I_{1}=0.5 \mathrm{~A} \text { and } I_{2}=0
$$

Fig. 7a

3) The operation steps are:

First step

Turn on power switch K, and increase the total current I to 20 A , i. e. equal to I_{1}. Since the superconducting switch is in the state $r=0$, so that $V_{M}=L d I_{1} / d t=0$, that is, I_{1} can not change and I_{2} increases by 20A, in other words, I_{2} changes from -20 A to zero.

Second step

Switch r from 0 to r_{n}.

Third step

Gradually reduce I to zero while keeping $I_{2}<0.5 \mathrm{~A}$: since $I_{2}=V_{M} / r_{n}$ and $V_{m}=L d I_{1} / d t$, when $L=10 \mathrm{H}, r_{n}=5 \Omega$, the requirement $I_{2}<0.5$ A corresponds to $d I_{1} / d t<0.25 \mathrm{~A} / \mathrm{sec}$, that is, a drop of $<15 \mathrm{~A}$ in 1 min . In Fig. $8 d I / d t \sim 0.1 \mathrm{~A} / \mathrm{sec}$ and $d I_{1} / d t$ is around this value too, so the requirement has been fulfilled.

Final step

Switch r to zero when $V_{M}=0$ and turn off the power switch K. These results are shown in Fig. 8.

Fig. 8a

8b

8c

4) First step and second step are the same as that in part 3, resulting in $I_{2}=0$.

Third step Increase I by 10 A to 30 A with a rate subject to the requirement $I_{2}<0.5 \mathrm{~A}$.

Fourth step Switch r to zero when $V_{M}=0$.

Fifth step Reduce I to zero, $I_{1}=30$ A will not change because V_{M} is zero. $I_{2}=I-I_{1}$ will change to -30 A . The current flowing through the magnet is thus closed by the superconducting switch.

Final step Turn off the power switch K. The magnet is operating in the persistent mode.

These results are shown in Fig. 9.

Fig. 9a

9b

9c

$$
9 \mathrm{~d}
$$

Grading Scheme

Part 1, $\quad 2$ points:
0.5 point for each of I_{1}, I_{2} from $t=t_{1}$ to t_{3} and I_{1}, I_{2} from $t=t_{3}$ to t_{4}. Part 2, 3 points:
0.3 point for each of I_{1}, I_{2} from $t=0$ to $1 \mathrm{~min}, I, I_{1}, I_{2}$ at $t=1 \mathrm{~min}$,
and I_{0}, I_{1}, I_{2} from $t=1$ to 2 min ;
0.2 point for each of I, I_{1}, and I_{2} from $t=2$ to 3 min .

Part 3, 2 points:
0.25 point for each section in Fig. 8 from $t=3$ to $9 \mathrm{~min}, 8$ sections in total.

Part 4, $\quad 3$ points:
0.25 point for each section in Fig. 9 from $t=3$ to $12 \mathrm{~min}, 12$ sections in total.

