

Theoretical Problem 2—Solution

1) For $t=t_1$ to t_3

Since r = 0, the voltage across the magnet $V_M = LdI_1 / dt = 0$, therefore,

$$I_1 = I_1(t_1) = \frac{1}{2}I_0;$$

$$I_2 = I - I_1 = I - \frac{1}{2}I_0.$$

For $t=t_3$ to t_4

Since $I_2=0$ at $t=t_3$, and I is kept at $\frac{1}{2}I_0$ after

 $t = t_3$, $V_M = I_2 r_n = 0$, therefore, I_1 and I_2 will not change.

$$I_1 = \frac{1}{2}I_0;$$

 $I_2 = 0$

These results are shown in Fig. 6.

2) For t = 0 to t = 1 min:

Since r = 0, $V_M = L dI_1 / dt = 0$

$$I_1 = I_1(0) = 0$$

 $I_2 = I - I_1 = 0.5 \text{ A}.$

At t = 1 min, r suddenly jumps from O to r_n , I will drop from E/R to $E/(R + r_n)$ instantaneously, because I_1 can not change abruptly due to the inductance of the magnet coil. For E/R=0.5A, $R=7.5\Omega$ and $R_n = 5\Omega$. I will drop to 0.3A.

For t = 1 min to 2 min:

I, I_1 and I_2 gradually approach their steady values:

$$I = \frac{E}{R} = 0.5 \text{ A},$$

 $I_1 = I = 0.5 \text{ A}$
 $I_2 = 0.$

The time constant

$$\tau = \frac{L(R+r_n)}{Rr_n} \, .$$

When L = 10 H, $R = 7.5\Omega$ and $r_n = 5\Omega$, $\tau = 3$ sec.

For $t = 2 \min to 3 \min$:

Since r = 0, I_1 and I_2 will not change, that is

$$I_1 = 0.5 \text{ A and } I_2 = 0$$

3) The operation steps are:

First step

Turn on power switch K, and increase the total current I to 20 A, i. e. equal to I_1 . Since the superconducting switch is in the state r = 0, so that $V_M = L \frac{dI_1}{dt} = 0$, that is, I_1 can not change and I_2 increases by 20A, in other words, I_2 changes from -20 A to zero.

Second step

Switch r from 0 to r_n .

Third step

Gradually reduce I to zero while keeping $I_2 < 0.5$ A: since $I_2 = V_M / r_n$ and $V_m = L dI_1 / dt$, when L = 10 H, $r_n = 5\Omega$, the requirement $I_2 < 0.5$ A corresponds to $dI_1 / dt < 0.25$ A/sec, that is, a drop of <15A in 1 min. In Fig. 8 $dI / dt \sim 0.1$ A/sec and dI_1 / dt is around this value too, so the requirement has been fulfilled.

Final step

Switch r to zero when $V_M = 0$ and turn off the power switch K. These results are shown in Fig. 8.

4) First step and second step are the same as that in part 3, resulting in $I_2 = 0$.

Third step Increase I by 10 A to 30 A with a rate subject to the requirement $I_2 < 0.5$ A.

Fourth step Switch r to zero when $V_M = 0$.

Fifth step Reduce I to zero, $I_1 = 30$ A will not change because V_M is zero. $I_2 = I - I_1$ will change to -30 A. The current flowing through the magnet is thus closed by the superconducting switch.

Final step Turn off the power switch *K*. The magnet is operating in the persistent mode.

These results are shown in Fig. 9.

Grading Scheme

Part 1, 2 points:

0.5 point for each of I_1 , I_2 from $t = t_1$ to t_3 and I_1 , I_2 from $t = t_3$ to t_4 . Part 2, 3 points:

0.3 point for each of I_1 , I_2 from t = 0 to 1 min, I, I_1 , I_2 at t = 1 min,

and I_0 , I_1 , I_2 from t = 1 to 2 min;

0.2 point for each of I, I_1 , and I_2 from t = 2 to 3 min.

Part 3, 2 points:

0.25 point for each section in Fig. 8 from t = 3 to 9 min, 8 sections in total.

Part 4, 3 points:

0.25 point for each section in Fig. 9 from t = 3 to 12 min, 12 sections in total.