$27^{\text {th }}$ INTERNATIONAL PHYSICS OLYMPIAD

27 ${ }^{\text {th }}$ INTERNATIONAL PHYSICS OLYMPIAD OSLO, NORWAY

THEORETICAL COMPETITION
 JULY 21996

Solution Problem 1

a) The system of resistances can be redrawn as shown in the figure:

The equivalent drawing of the circuit shows that the resistance between point c and point A is 0.5Ω, and the same between point d and point B . The resistance between points A and B thus consists of two connections in parallel: the direct 1Ω connection and a connection consisting of two 0.5Ω resistances in series, in other words two parallel 1Ω connections. This yields

$$
R=\underline{\underline{0.5 \Omega}} .
$$

b) For a sufficiently short horizontal displacement Δs the path can be considered straight. If the corresponding length of the path element is ΔL, the friction force is given by

$$
\mu m g \frac{\Delta s}{\Delta L}
$$

and the work done by the friction force equals force times displacement:

$$
\mu m g \frac{\Delta s}{\Delta L} \cdot \Delta L=\mu m g \Delta s
$$

Adding up, we find that along the whole path the total work done by friction forces i $\mu m g s$. By energy conservation this must equal the decrease $m g h$ in potential energy of the skier. Hence

$$
h=\underline{\underline{\mu s}} .
$$

c) Let the temperature increase in a small time interval $d t$ be $d T$. During this time interval the metal receives an energy $P d t$.

The heat capacity is the ratio between the energy supplied and the temperature increase:

$$
C_{p}=\frac{P d t}{d T}=\frac{P}{d T / d t} .
$$

The experimental results correspond to

$$
\frac{d T}{d t}=\frac{T_{0}}{4} a\left[1+a\left(t-t_{0}\right)\right]^{-3 / 4}=T_{0} \frac{a}{4}\left(\frac{T_{0}}{T}\right)^{3} .
$$

Hence

$$
C_{p}=\frac{P}{d T / d t}=\frac{4 P}{a T_{0}{ }^{4}} T^{3} .
$$

(Comment: At low, but not extremely low, temperatures heat capacities of metals follow such a T^{3} law.)
d)

Under stationary conditions the net heat flow is the same everywhere:

$$
\begin{aligned}
& J=\sigma\left(T_{h}^{4}-T_{1}^{4}\right) \\
& J=\sigma\left(T_{1}^{4}-T_{2}^{4}\right) \\
& J=\sigma\left(T_{2}^{4}-T_{l}^{4}\right)
\end{aligned}
$$

Adding these three equations we get

$$
3 J=\sigma\left(T_{h}^{4}-T_{l}^{4}\right)=J_{0}
$$

where J_{0} is the heat flow in the absence of the heat shield. Thus $\xi=J / J_{0}$ takes the value

$$
\xi=\underline{\underline{1 / 3}} .
$$

e) The magnetic field can be determined as the superposition of the fields of two cylindrical conductors, since the effects of the currents in the area of intersection cancel. Each of the cylindrical conductors must carry a larger current I^{\prime}, determined so that the fraction I of it is carried by the actual cross section (the moon-shaped area). The ratio between the currents I and I^{\prime} equals the ratio between the cross section areas:

$$
\frac{I}{I^{\prime}}=\frac{\left(\frac{\pi}{12}+\frac{\sqrt{3}}{8}\right) D^{2}}{\frac{\pi}{4} D^{2}}=\frac{2 \pi+3 \sqrt{3}}{6 \pi} .
$$

Inside one cylindrical conductor carrying a current I^{\prime} Ampère's law yields at a distance r from the axis an azimuthal field

$$
B_{\phi}=\frac{\mu_{0}}{2 \pi r} \frac{I^{\prime} \pi r^{2}}{\frac{\pi}{4} D^{2}}=\frac{2 \mu_{0} I^{\prime} r}{\pi D^{2}} .
$$

The cartesian components of this are

$$
B_{x}=-B_{\phi} \frac{y}{r}=-\frac{2 \mu_{0} I^{\prime} y}{\pi D^{2}} ; \quad B_{y}=B_{\phi} \frac{x}{r}=\frac{2 \mu_{0} I^{\prime} x}{\pi D^{2}} .
$$

For the superposed fields, the currents are $\pm I^{\prime}$ and the corresponding cylinder axes are located at $x=\mp D / 4$.

The two x-components add up to zero, while the y-components yield

$$
B_{y}=\frac{2 \mu_{0}}{\pi D^{2}}\left[I^{\prime}(x+D / 4)-I^{\prime}(x-D / 4)\right]=\frac{\mu_{0} I^{\prime}}{\pi D}=\frac{6 \mu_{0} I}{\underline{\underline{(2 \pi+3 \sqrt{3}) D}}},
$$

i.e., a constant field. The direction is along the positive y-axis.

