Solution Problem 2

a) The potential energy gain eV is converted into kinetic energy. Thus

$$
\begin{array}{ll}
\frac{1}{2} m v^{2}=e V & \text { (non-relativistically) } \\
\frac{m c^{2}}{}-m c^{2}=e V & \text { (relativistically). }
\end{array}
$$

Hence

$$
v=\left\{\begin{array}{lc}
\sqrt{2 e V / m} & \text { (non - relativistically) } \tag{1}\\
c \sqrt{1-\left(\frac{m c^{2}}{m c^{2}+e V}\right)^{2}} & \text { (relativistically) }
\end{array}\right.
$$

b) When $V=0$ the electron moves in a homogeneous static magnetic field. The magnetic Lorentz force acts orthogonal to the velocity and the electron will move in a circle. The initial velocity is tangential to the circle.

The radius R of the orbit (the "cyclotron radius") is determined by equating the centripetal force and the Lorentz force:
i.e.

$$
e B v_{0}=\frac{m v_{0}^{2}}{R},
$$

$$
\begin{equation*}
B=\frac{m v_{0}}{e R} . \tag{2}
\end{equation*}
$$

From the figure we see that in the critical case the radius R of the circle satisfies

$$
\sqrt{a^{2}+R^{2}}=b-R
$$

By squaring we obtain
i.e.

$$
a^{2}+R^{2}=b^{2}-2 b R+R^{2},
$$

$$
R=\left(b^{2}-a^{2}\right) / 2 b
$$

Insertion of this value for the radius into the expression (2) gives the critical field

$$
B_{c}=\frac{m v_{0}}{e R}=\frac{2 b m v_{0}}{\left(b^{2}-a^{2}\right) e} .
$$

c) The change in angular momentum with time is produced by a torque. Here the azimuthal component F_{ϕ} of the Lorentz force $\vec{F}=(-e) B \times \vec{v}$ provides a torque $F_{\phi} r$. It is only the radial component $v_{r}=d r / d t$ of the velocity that provides an azimuthal Lorentz force. Hence

$$
\frac{d L}{d t}=e B r \frac{d r}{d t},
$$

which can be rewritten as

$$
\frac{d}{d t}\left(L-\frac{e B r^{2}}{2}\right)=0 .
$$

Hence

$$
\begin{equation*}
C=\underline{\underline{L-\frac{1}{2}} e B r^{2}} \tag{3}
\end{equation*}
$$

is constant during the motion. The dimensionless number k in the problem text is thus $k=\underline{1 / 2}$.
d) We evaluate the constant C, equation (3), at the surface of the inner cylinder and at the maximal distance r_{m} :

$$
0-\frac{1}{2} e B a^{2}=m v r_{m}-\frac{1}{2} e B r_{m}^{2}
$$

which gives

$$
\begin{equation*}
v=\frac{\frac{e B\left(r_{m}^{2}-a^{2}\right)}{2 m r_{m}}}{} . \tag{4}
\end{equation*}
$$

Alternative solution: One may first determine the electric potential $V(r)$ as function of the radial distance. In cylindrical geometry the field falls off inversely proportional to r, which requires a logarithmic potential, $V(s)=c_{1} \ln r+c_{2}$. When the two constants are determined to yield $V(a)=0$ and $V(b)=V$ we have

$$
V(r)=V \frac{\ln (r / a)}{\ln (b / a)} .
$$

The gain in potential energy, $\operatorname{sV}\left(r_{m}\right)$, is converted into kinetic energy:

$$
\frac{1}{2} m v^{2}=e V \frac{\ln \left(r_{m} / a\right)}{\ln (b / a)} .
$$

Thus

$$
\begin{equation*}
v=\sqrt{\frac{2 e V}{m} \frac{\ln \left(r_{m} / a\right)}{\ln (b / a)}} . \tag{5}
\end{equation*}
$$

(4) and (5) seem to be different answers. This is only apparent since r_{m} is not an independent parameter, but determined by B and V so that the two answers are identical.
e) For the critical magnetic field the maximal distance r_{m} equals b, the radius of the outer cylinder, and the speed at the turning point is then

$$
v=\frac{e B\left(b^{2}-a^{2}\right)}{2 m b} .
$$

Since the Lorentz force does no work, the corresponding kinetic energy $\frac{1}{2} m v^{2}$ equals $e V$ (question a):

$$
v=\sqrt{2 e V / m}
$$

The last two equations are consistent when

$$
\frac{e B\left(b^{2}-a^{2}\right)}{2 m b}=\sqrt{2 e V / m}
$$

The critical magnetic field for current cut-off is therefore

$$
B_{c}=\frac{2 b}{\underline{b^{2}-a^{2}} \sqrt{\frac{2 m V}{e}}}
$$

f) The Lorentz force has no component parallel to the magnetic field, and consequently the velocity component v_{B} is constant under the motion. The corresponding displacement parallel to the cylinder axis has no relevance for the question of reaching the anode.

Let v denote the final azimuthal speed of an electron that barely reaches the anode. Conservation of energy implies that

$$
\frac{1}{2} m\left(v_{B}^{2}+v_{\phi}^{2}+v_{r}^{2}\right)+e V=\frac{1}{2} m\left(v_{B}^{2}+v^{2}\right),
$$

giving

$$
\begin{equation*}
v=\sqrt{v_{r}^{2}+v_{\phi}^{2}+2 e V / m} \tag{6}
\end{equation*}
$$

Evaluating the constant C in (3) at both cylinder surfaces for the critical situation we have

$$
m v_{\phi} a-\frac{1}{2} e B_{c} a^{2}=m v b-\frac{1}{2} e B_{c} b^{2} .
$$

Insertion of the value (6) for the velocity v yields the critical field

$$
B_{c}=\frac{2 m\left(v b-v_{\phi} a\right)}{e\left(b^{2}-a^{2}\right)}=\frac{2 m b}{e\left(b^{2}-a^{2}\right)}\left[\sqrt{v_{r}^{2}+v_{\phi}^{2}+2 e V / m}-v_{\phi} a / b\right] .
$$

Solution Problem 3

a) With the centre of the earth as origin, let the centre of mass C be located at \vec{l}. The distance l is determined by

$$
M l=M_{m}(L-l),
$$

which gives

$$
\begin{equation*}
l=\frac{M_{m}}{M+M_{m}} L=\underline{4.63 \cdot 10^{6} \mathrm{~m}}, \tag{1}
\end{equation*}
$$

less than R, and thus inside the earth.
The centrifugal force must balance the gravitational attraction between the moon and the earth:

$$
M \omega^{2} l=G \frac{M M_{m}}{L^{2}}
$$

which gives

$$
\begin{equation*}
\omega=\sqrt{\frac{G M_{m}}{L^{2} l}}=\underline{\underline{\frac{G\left(M+M_{m}\right)}{L^{3}}}}=\underline{\underline{2.67 \cdot 10^{-6} \mathrm{~s}^{-1}}} . \tag{2}
\end{equation*}
$$

(This corresponds to a period $2 \pi / \omega=27.2$ days.) We have used (1) to eliminate l.
b) The potential energy of the mass point m consists of three contributions:
(1) Potential energy because of rotation (in the rotating frame of reference, see the problem text),

$$
-\frac{1}{2} m \omega^{2} r_{1}^{2}
$$

where \vec{r}_{1} is the distance from C. This corresponds to the centrifugal force $m \omega^{2} r_{1}$, directed outwards from C.
(2) Gravitational attraction to the earth,

$$
-G \frac{m M}{r} .
$$

(3) Gravitational attraction to the moon,

