Theory Question 2: Solution:

Nuclear Masses and Stability

(a) The alpha-decay process is as follows:

$$
A \rightarrow(A-4)+\alpha(A=4)
$$

Therefore the energy criterion for decay to happen is:

$$
m_{A}-m_{A-4}-m_{4}>0
$$

The number and type of nucleons in the decay is preserved so we only have to consider the binding energies:

$$
-B_{A}+B_{A-4}+B_{4}>0
$$

If we write $B / A=a+b A$, where a and b are constants to be found from the graph, then this equation becomes:

$$
\begin{gathered}
-A(a+b A)+(A-4)(a+b(A-4))+B_{4}>0 \\
-8 b A-4 a+16 b+B_{4}>0
\end{gathered}
$$

By inspecting the graph, a good linear approximation to B / A above $A=100$ is:

$$
B / A=(9.6-0.0080 \times A) \mathrm{MeV}
$$

i.e. $a=9.6 \mathrm{MeV}$ and $b=0.0080 \mathrm{MeV}$, and the condition becomes:

$$
\begin{gathered}
-0.064 A-38.4-0.1+25.0>0 \\
A>13.5 / 0.064=211
\end{gathered}
$$

Part (b).
(i) Because A is fixed we only need to consider the penultimate two terms which depend on Z.

$$
\frac{d B}{d Z}=-2 Z a_{c} A^{-1 / 3}-\frac{a_{a}}{A}(-4 A+8 Z)
$$

$$
Z_{\max }=\frac{4 a_{a}}{2 a_{c} A^{-1 / 3}+8 a_{a} / A}=\frac{A}{2} \frac{1}{\left(1+\frac{a_{c} A^{\frac{2}{3}}}{4 a_{a}}\right)}
$$

(ii) $Z_{\text {max }}=79.25$

The full expression for the differential equation in (a) is:

$$
\frac{d B}{d Z}=-2 Z a_{c} A^{-1 / 3}-\frac{a_{a}}{A}(-4 A+8 Z) \pm 2 a_{p} A^{-3 / 4}
$$

The last term is positive if a change in Z of +1 changes the nucleus from an even-even to an odd-odd, and negative if the reverse is true. Note A is positive in this case.

How do we deal with the last term?
The number $Z_{\text {max }}$ has to be an integer, and even numbers are favoured over odd so we can guess $Z_{\max }=80$. To check, evaluate the last three terms for various values of Z :

77	979.241
78	975.915
79	976.295
80	975.341
81	978.093
82	979.512
83	984.637

This confirms that $Z_{\max }=80$; this is an even-even nucleus.
(iii) Consider only the last three terms in the equation; the rest are constant if A is constant. Call the sum of these quantities X. To find out whether these nuclei are stable we need to find differences in X between neighbouring species and to compare these differences with the energy requirements for each would-be decay process.
(i) β^{-}- decay; $n \rightarrow p+e^{-}$, need $\Delta X>-1.30+0.51=-0.79 \mathrm{MeV}$
(ii) β^{+}- decay; $p \rightarrow n+e^{+}$, need $\Delta X>1.30+0.51=1.81 \mathrm{MeV}$
(iii) $\beta^{-} \beta^{-}$- decay; $2 n \rightarrow 2 p+2 e^{-}$, need $\Delta X>2(-1.30+0.51)=-1.58 \mathrm{MeV}$
(iv) Electron capture; $e^{-}+p \rightarrow n$, need $\Delta X>1.30-0.51=0.79 \mathrm{MeV}$

\uparrow For information: graph not expected from students

Nucleus/Process	$X(\mathrm{MeV})$
${ }_{51}^{128} \mathrm{Sb}$	496.59
${ }_{52}^{18} \mathrm{Te}$	491.19
${ }_{53}^{128} \mathrm{I}$	491.06
${ }_{54}^{128} \mathrm{Xe}$	489.16
${ }_{55}^{128} \mathrm{Cs}$	492.54

\uparrow For information: table not expected from students

Nucleus/Process	β^{-}- decay	β^{+}- decay	Electron-capture	$\beta^{-} \beta^{-}$- decay
${ }_{53}^{128} \mathrm{I}$	$\sqrt{28}$	0	0	$\sqrt{ }$
${ }_{54}^{128} \mathrm{Xe}$	0	0	0	0
${ }_{55}^{128} \mathrm{Cs}$	0	$\sqrt{2}$	$\sqrt{ }$	0

Students will fill out this table

Theory Question No.2: Mark Distribution

Smallest fractional mark allowed: 0.25

Marks allowed for errors consistently propagated only if physically reasonable.

(a)	Approach	1.5	
	Correct Answer	1.5	
(b)(i)	Approach	1	
	Correct Answer	1	
(b)(ii)	Approach	1	
	Correct Answer	1	
(b)(iii)	0.25 for each of 12 entries	3	
	Grand Total		10

