Theory Question 2: Solution:

Nuclear Masses and Stability

(a) The alpha-decay process is as follows:

$$A \rightarrow (A-4) + \alpha (A=4)$$

Therefore the energy criterion for decay to happen is:

$$m_A - m_{A-4} - m_4 > 0$$

The number and type of nucleons in the decay is preserved so we only have to consider the binding energies:

$$-B_A + B_{A-4} + B_4 > 0$$

If we write B/A = a + bA, where *a* and *b* are constants to be found from the graph, then this equation becomes:

$$-A(a+bA) + (A-4)(a+b(A-4)) + B_4 > 0$$
$$-8bA - 4a + 16b + B_4 > 0$$

By inspecting the graph, a good linear approximation to B/A above A = 100 is:

$$B/A = (9.6 - 0.0080 \times A)$$
 MeV

i.e. a = 9.6 MeV and b = 0.0080 MeV, and the condition becomes:

$$-0.064A - 38.4 - 0.1 + 25.0 > 0$$
$$A > 13.5/0.064 = 211$$

Part (b).

(i) Because A is fixed we only need to consider the penultimate two terms which depend on Z.

$$\frac{dB}{dZ} = -2Za_c A^{-1/3} - \frac{a_a}{A}(-4A + 8Z)$$

$$Z_{\max} = \frac{4a_a}{2a_c A^{-1/3} + 8a_a / A} = \frac{A}{2} \frac{1}{\left(1 + \frac{a_c A^{\frac{2}{3}}}{4a_a}\right)}$$

(ii) $Z_{\text{max}} = 79.25$

The full expression for the differential equation in (a) is:

$$\frac{dB}{dZ} = -2Za_c A^{-1/3} - \frac{a_a}{A}(-4A + 8Z) \pm 2a_p A^{-3/4}$$

The last term is positive if a change in Z of +1 changes the nucleus from an even-even to an odd-odd, and negative if the reverse is true. Note A is positive in this case.

How do we deal with the last term?

The number Z_{max} has to be an integer, and even numbers are favoured over odd so we can guess $Z_{\text{max}} = 80$. To check, evaluate the last three terms for various values of Z:

77	979.241
78	975.915
79	976.295
80	975.341
81	978.093
82	979.512
83	984.637

This confirms that $Z_{\text{max}} = 80$; this is an even-even nucleus.

(iii) Consider only the last three terms in the equation; the rest are constant if A is constant. Call the sum of these quantities X. To find out whether these nuclei are stable we need to find differences in X between neighbouring species and to compare these differences with the energy requirements for each would-be decay process.

(i) β^{-} decay; $n \to p + e^{-}$, need $\Delta X > -1.30 + 0.51 = -0.79$ MeV (ii) β^{+} decay; $p \to n + e^{+}$, need $\Delta X > 1.30 + 0.51 = 1.81$ MeV (iii) $\beta^{-}\beta^{-}$ decay; $2n \to 2p + 2e^{-}$, need $\Delta X > 2(-1.30 + 0.51) = -1.58$ MeV (iv) Electron capture; $e^{-} + p \to n$, need $\Delta X > 1.30 - 0.51 = 0.79$ MeV

\uparrow For information: graph not expected from students

Nucleus/Process	X(MeV)	
$^{128}_{51}{ m Sb}$	496.59	
¹²⁸ ₅₂ Te	491.19	
$^{128}_{53}\mathrm{I}$	491.06	
$^{128}_{54}$ Xe	489.16	
$^{128}_{55}{ m Cs}$	492.54	

\uparrow For information: table not expected from students

Nucleus/Process	β ⁻ - decay	eta + - decay	Electron-capture	$\beta^{-}\beta^{-}$ - decay
$^{128}_{53}\mathrm{I}$		0	0	
$^{128}_{54}{ m Xe}$	0	0	0	0
$^{128}_{55}{ m Cs}$	0	\checkmark	\checkmark	0

Students will fill out this table

Theory Question No.2: Mark Distribution

Smallest fractional mark allowed: 0.25

Marks allowed for errors consistently propagated only if physically reasonable.

(a)	Approach Correct Answer	1.5 1.5	
(b)(i)	Approach Correct Answer	1 1	3
(b)(ii)	Approach	1	2
(b)(iii)	0.25 for each of 12 entries	3	2
	Grand Total		3 10