Theory Question 3: Solution

Solar-Powered Aircraft

(a) The force \vec{F} required to change the velocity $\Delta \vec{v}$ of a fluid whose flow rate is $\frac{d m}{d t}$ is given by:

$$
\vec{F}=\Delta \vec{v} \frac{d m}{d t}
$$

In this case the flow rate is:

$$
\frac{d m}{d t}=x l \rho v=\frac{\pi}{4} l^{2} \rho v
$$

The vertical component of $\Delta \vec{v}$ is:

$$
\Delta v_{V}=v \sin \varepsilon
$$

The horizontal component of $\Delta \vec{v}$ is:

$$
\Delta v_{H}=v(1-\cos \varepsilon)
$$

We can now write expressions for the lift L and drag D_{l} (called form drag).

$$
\begin{gathered}
L=\frac{\pi}{4} \rho v^{2} l^{2} \sin \varepsilon \\
D_{1}=\frac{\pi}{4} \rho v^{2} l^{2}(1-\cos \varepsilon)
\end{gathered}
$$

Approximations using ε instead of $\sin \varepsilon$ etc. are allowed.
(b) The power required to keep the aircraft flying straight and level is given by:

$$
P=D v=\left(D_{1}+D_{2}\right) v
$$

The horizontal drag force D_{2} (frictional drag) is given by the rate of change of momentum of the air flowing past the wing due to friction:

$$
D_{2}=v_{1} \frac{d m_{1}}{d t}-v_{2} \frac{d m_{2}}{d t}
$$

Since the wing is neither a source nor a sink, the mass flow of air into the wing $\left(\frac{d m_{1}}{d t}\right)$ must be the same as the mass flow from the wing $\left(\frac{d m_{2}}{d t}\right)$ therefore:

$$
\frac{d m_{1}}{d t}=\frac{d m_{2}}{d t}=\frac{d m}{d t}=x l \rho v
$$

Substituting $\mathrm{v}_{1}=\mathrm{v}$ and $\mathrm{v}_{2}=\mathrm{v}-\Delta \mathrm{v}$:

$$
D_{2}=v x l \rho v-(v-\Delta v) x l \rho v=x l \rho v^{2}-x l \rho v^{2}+v \Delta v x l \rho=x l \rho v \Delta v=\frac{\pi l}{4} l \rho v \Delta v=\frac{\pi f}{4 A} \rho v^{2} l^{2}
$$

(This drag is necessarily along the wing surface; when the wing is at an angle ε, the horizontal component is this value multiplied by $\cos \varepsilon$.:

$$
\frac{\pi f}{4 A} \rho v^{2} l^{2} \cos \varepsilon \approx \frac{\pi f}{4 A} \rho v^{2} l^{2}\left(1-\frac{\varepsilon^{2}}{2}\right) \approx \frac{\pi f}{4 A} \rho v^{2} l^{2}+O\left(\varepsilon^{2} f\right)
$$

so to the order given, our simple answer is correct.)
The total drag force $D=D_{1}+D_{2}$ is dependent on the deflection angle ε and the drag coefficient f :

$$
D=\frac{\pi}{4} \rho v^{2} l^{2}\left((1-\cos \varepsilon)+\frac{f}{A}\right) \approx \frac{\pi}{4} \rho v^{2} l^{2}\left(\frac{1}{2} \sin ^{2} \varepsilon+\frac{f}{A}\right)
$$

In making this approximation D can be expressed in terms of the mass, speed and wing dimensions of the aircraft. Note that for level flight the lift has to be equal to the weight of the craft.

$$
L=M g=\frac{\pi}{4} \rho v^{2} l^{2} \sin \varepsilon ; \quad \sin \varepsilon=\frac{4 M g}{\pi \rho v^{2} l^{2}}
$$

We can now minimize power with respect to either v or ε; here we choose v.

$$
\begin{gathered}
P=D v=\frac{\pi}{4} \rho v^{3} l^{2}\left(\frac{f}{A}+\frac{1}{2} \frac{(4 M g)^{2}}{\left(\pi \rho v^{2} l^{2}\right)^{2}}\right)=\frac{\pi}{4} \rho v^{3} l^{2} \frac{f}{A}+\frac{2(M g)^{2}}{\pi \rho v l^{2}} \\
\frac{d P}{d v}=\frac{3 \pi}{4} \rho v^{2} l^{2} \frac{f}{A}-\frac{2(M g)^{2}}{\pi \rho v^{2} l^{2}}=0, \text { when } v=v_{0}
\end{gathered}
$$

Flight velocity for minimum power:

$$
v_{0}{ }^{4}=\frac{8(M g)^{2} A}{3 \pi^{2} \rho^{2} l^{4} f}=\frac{8}{3 A f}\left(\frac{M g}{\pi \rho S}\right)^{2}
$$

(c) The graph of power vs. velocity is as follows:

$$
\begin{aligned}
P_{\min } & =\frac{\pi}{4} \rho v_{0}{ }^{3} l^{2}\left(\frac{f}{A}+\frac{1}{2} \frac{(4 M g)^{2}}{\left(\pi \rho v_{0}^{2} l^{2}\right)^{2}}\right)=\frac{\pi}{4} \rho v_{0}{ }^{3} l^{2}\left(\frac{f}{A}+\frac{(4 M g)^{2}}{2\left(\pi \rho l^{2}\right)^{2}} \frac{3 \pi^{2} \rho^{2} l^{4} f}{8(M g)^{2} A}\right) \\
& =\pi \rho v_{0}{ }^{3} l^{2} \frac{f}{A}=\pi \rho v_{0}{ }^{3} S f
\end{aligned}
$$

Substitute for v_{0} :

$$
P_{\min }=\pi \rho S f \frac{8^{\frac{3}{4}}(M g)^{\frac{3}{2}}}{(3 A f)^{\frac{3}{4}}(\pi \rho S)^{\frac{3}{2}}}=\left(\frac{8}{3 A}\right)^{\frac{3}{4}} f^{\frac{1}{4}} \frac{(M g)^{\frac{3}{2}}}{(\pi \rho S)^{\frac{1}{2}}}
$$

(d) Equate this to available power, $P_{\text {avail }}=I S=P_{\min }$:

$$
\begin{aligned}
& \left(\frac{M g}{S}\right)^{\frac{3}{2}}=I\left(\frac{3 A}{8}\right)^{\frac{3}{4}} \frac{(\pi \rho)^{\frac{1}{2}}}{f^{\frac{1}{4}}} \\
& \frac{M g}{S}=I^{\frac{2}{3}}\left(\frac{3 A}{8}\right)^{\frac{1}{2}} \frac{(\pi \rho)^{\frac{1}{3}}}{f^{\frac{1}{6}}}
\end{aligned}
$$

The numerical answers are:

$$
\frac{M g}{S}=35.6 \mathrm{~N} / \mathrm{m}^{2}, \quad v_{0}=8.60 \mathrm{~m} / \mathrm{s}
$$

Theory Question No.3: Mark Distribution

Smallest fractional mark allowed: 0.25

Marks allowed for errors consistently propagated only if physically reasonable.

	MAXIMUM	SCORE	SUBTOTAL
(a) Formulation of Newton II	1		
Approach to drag	.5		
D_{1} formula:	.5		
Approach to lift	.5		
L formula:	.5		
			(a)
(b) Correct approach to D_{2}	.5		
Correct expression for D_{2}	.5		
Correct minimization approach	1		
Expression for v_{0}	1		
			(b)
(c) Correct expression for power	1		
Graph $\left(1 / v, v^{3}\right.$ forms)	1		(c)
(d) Correct wing loading	1		
Correct speed	1		(d)
TOTAL	10		

Committee Chair

Chris Waltham, Department of Physics \& Astronomy, University of British Columbia

