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Solution- Theoretical Question 1 

A Swing with a Falling Weight 

Part A 

(a) Since the length of the string θRsL +=  is constant, its rate of change must be 

zero. Hence we have 

0=+ θ&& Rs                                     (A1)*
1
 

(b) Relative to O, Q moves on a circle of radius R with angular velocity θ& , so 

tstRvQ
ˆˆ &&r

−== θ                                (A2)* 

(c) Refer to Fig. A1. Relative to Q, the displacement of P in a time interval ∆t 

is ttsrstsrsr ∆θ∆θ∆∆ ]ˆ)ˆ)([(ˆ)()ˆ)(( &&r
+−=+−=′ . It follows 

tsrsv ˆˆ &&r
+−=′ θ                                 (A3)* 

 

 

 

 

 

 

 

 

 

(d) The velocity of the particle relative to O is the sum of the two relative velocities 

given in Eqs. (A2) and (A3) so that 

rstRtsrsvvv Q ˆˆ)ˆˆ( θθθ &&&&rrr
−=++−=+′=              (A4)* 

(e) Refer to Fig. A2. The ( t̂− )-component of the velocity change v
r

∆  is given by  

tvvvt ∆θθ∆∆ &r
==⋅− )ˆ( . Therefore, the t̂ -component of the acceleration 

tva ∆∆ /
rr

=  is given by θ&vat −=⋅ ˆˆ . Since the speed v of the particle is θ&s  

according to Eq. (A4), we see that the t̂ -component of the particle’s 

acceleration  at P is given by 

2)(ˆ θθθθ &&&&r
ssvta −=−=−=⋅                        (A5)* 

 

 

 

 

 

 

                                                 
1
 An equation marked with an asterisk contains answer to the problem. 
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Note that, from Fig. A2, the radial component of the acceleration may also be 

obtained as dtsddtdvra /)(/ˆ θ&
r

−=−=⋅ . 

 

(f) Refer to Fig. A3. The gravitational potential energy of the particle is given by 

mghU −= . It may be expressed in terms of s and θ  as 

]sin)cos1([)( θθθ sRmgU +−−=                  (A6)* 

 

 

 

 

 

 

 

 

(g) At the lowest point of its trajectory, the particle’s gravitational potential energy  

U must assume its minimum value Um. If the particle’s mechanical energy  E 

were equal to  Um, its kinetic energy would be zero. The particle would then 

remain stationary and be in the static equilibrium state shown in Fig. A4. Thus, 

the potential energy reaches its minimum value when θ  = π /2 or s = L− πR /2. 

 

 

 

 

 

 

 

 

 

From Fig. A4 or Eq. (A6), the minimum potential energy is then 

)]2/([)
2

( RLRmgUU m π
π

−+−== .               (A7) 

Initially, the total mechanical energy E is 0. Since E is conserved, the speed  vm 

of the particle at the lowest point of its trajectory must satisfy 

mm UmvE +== 2

2

1
0 .                           (A8) 

From Eqs. (A7) and (A8), we obtain 

)]2/([2/2 RLRgmUv mm π−+=−= .          (A9)* 
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Part B 

(h) From Eq. (A6), the total mechanical energy of the particle may be written as 

]sin)cos1([
2

1
)(

2

1
0 22 θθθ sRmgmvUmvE +−−=+==    (B1) 

From Eq. (A4), the speed v is equal to θ&s . Therefore, Eq. (B1) implies 

]sin)cos1([2)( 22 θθθ sRgsv +−== &                  (B2) 

Let T be the tension in the string. Then, as Fig. B1 shows, the t̂ -component of 

the net force on the particle is –T + mg sin θ . From Eq. (A5), the tangential 

acceleration of the particle is )( 2θ&s− . Thus, by Newton’s second law, we have 

θθ sin)( 2
mgTsm +−=− &                            (B3) 

 

 

 

 

 

 

 

 

 

 

According to the last two equations, the tension may be expressed as 
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The functions )2/tan(1 θ=y  and 2/)/(32 RLy −= θ  are plotted in Fig B2. 
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From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at 

which .y2 = y1 is called sθ ( πθπ 2<< s ) and is given by 

2
tan)(

2

3 s
s R

L θ
θ =−                          (B5) 

or, equivalently, by 

2
tan

3

2 s
sR

L θ
θ −=                           (B6) 

Since the ratio L/R is known to be given by 

)
8

(
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tan

3
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16
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π
π
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+−+=+=
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    (B7) 

one can readily see from the last two equations that 8/9πθ =s . 

 

 

 

 

 

 

 

 

 

Table B1 shows that the tension T must be positive (or the string must be 

taut and straight) in the angular range 0<θ  < θ s. Once θ  reaches θ s, the tension 

T becomes zero and the part of the string not in contact with the rod will not be 

straight afterwards. The shortest possible value smin for the length s of the line 

segment QP therefore occurs at sθθ = and is given by 

R
R

RRLs s 352.3
16

cot
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2
)

8

9

16
cot

3

2

8

9
(min ==−+=−=

ππππ
θ    (B8) 

When sθθ = , we have T = 0 and Eqs. (B2) and (B3) then leads to 

θsin2
gsv −= . Hence the speed  v s is 

Table B1 

 )( 21 yy −  θsin  tension T 

πθ <<0  positive positive positive 

πθ =  + ∞ 0 positive 

sθθπ <<  negative negative positive 

sθθ =  zero negative zero 

πθθ 2<<s  positive negative negative 
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(i) When sθθ ≥ , the particle moves like a projectile under gravity. As shown in Fig. 

B3, it is projected with an initial speed  v s from the position ),( ss yxP =  in a 

direction making an angle )2/3( sθπφ −= with the y-axis. 

The speed Hv of the particle at the highest point of its parabolic trajectory is 

equal to the y-component of its initial velocity when projected. Thus, 

gR
gR

vv ssH 4334.0
8

sin
16

cos
3

4
)sin( ==−=

ππ
πθ      (B10)* 

The horizontal distance H traveled by the particle from point P to the point of 

maximum height is 

R
g

v

g

v
H sss 4535.0

4

9
sin

22

)(2sin 22

==
−

=
ππθ

              (B11) 

 

 

 

 

 

 

 

 

 

 

The coordinates of the particle when sθθ = are given by 

RsRsRx sss 358.0
8

sin
8

cossincos minmin =+−=−=
ππ

θθ      (B12) 

RsRsRy sss 478.3
8

cos
8

sincossin minmin −=−−=+=
ππ

θθ     (B13) 

Evidently, we have )(|| HRys +> . Therefore the particle can indeed reach its 

maximum height without striking the surface of the rod. 

Part C 

(j) Assume the weight is initially lower than O by h as shown in Fig. C1. 
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When the weight has fallen a distance D and stopped, the law of conservation of 

total mechanical energy as applied to the particle-weight pair as a system leads 

to 

)( DhMgEMgh +−′=−                           (C1) 

where E′ is the total mechanical energy of the particle when the weight has 

stopped. It follows 

MgDE =′                                      (C2) 

Let Λ be the total length of the string. Then, its value at θ = 0 must be the same 

as at any other angular displacement θ. Thus we must have 

)()
2

(
2

DhRshRL ++++=++=
π

θ
π

Λ              (C3) 

Noting that D = α L and introducing ℓ = L−D, we may write 

LDL )1( α−=−=l                              (C4) 

From the last two equations, we obtain 

θθ RRDLs −=−−= l                           (C5) 

After the weight has stopped, the total mechanical energy of the particle 

must be conserved. According to Eq. (C2), we now have, instead of Eq. (B1), 

the following equation: 

]sin)cos1([
2

1 2 θθ sRmgmvMgDE +−−==′          (C6) 

The square of the particle’s speed is accordingly given by 

]sin)cos1[(2
2

)( 22 θθθ
R

s
gR

m

MgD
sv +−+== &      .  (C7) 

Since Eq. (B3) stills applies, the tension T of the string is given by 

)(sin 2θθ &smmgT −=+−                           (C8) 

From the last two equations, it follows 
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where Eq. (C5) has been used to obtain the last equality. 

We now introduce the function 

θθθθ sin)(
2

3
cos1)( −+−=

R
f

l
                  (C10) 

From the fact ℓ = (L−D) >> R, we may write 
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where we have introduced 
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From Eq. (C11), the minimum value of f(θ) is seen to be given by 
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min )
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+−=−=                    (C13) 

Since the tension T remains nonnegative as the particle swings around the rod, 

we have from Eq. (C9) the inequality 
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From Eq. (C4), Eq. (C15) may be written as 
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Neglecting terms of the order (R/L) or higher, the last inequality leads to 
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The critical value for the ratio D/L is therefore 
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