Solution- Theoretical Question 3

Part A

Neutrino Mass and Neutron Decay

(a) Let $\left(c^{2} E_{e}, c \vec{q}_{e}\right),\left(c^{2} E_{p}, c \vec{q}_{p}\right)$, and $\left(c^{2} E_{v}, c \vec{q}_{v}\right)$ be the energy-momentum 4-vectors of the electron, the proton, and the anti-neutrino, respectively, in the rest frame of the neutron. Notice that $E_{e}, E_{p}, E_{v}, \vec{q}_{e}, \vec{q}_{p}, \vec{q}_{v}$ are all in units of mass. The proton and the anti-neutrino may be considered as forming a system of total rest mass M_{c}, total energy $c^{2} E_{c}$, and total momentum $c \vec{q}_{c}$. Thus, we have

$$
\begin{equation*}
E_{c}=E_{p}+E_{v}, \quad \vec{q}_{c}=\vec{q}_{p}+\vec{q}_{v}, \quad M_{c}^{2}=E_{c}^{2}-q_{c}^{2} \tag{A1}
\end{equation*}
$$

Note that the magnitude of the vector \vec{q}_{c} is denoted as q_{c}. The same convention also applies to all other vectors.

Since energy and momentum are conserved in the neutron decay, we have

$$
\begin{gather*}
E_{c}+E_{e}=m_{n} \tag{A2}\\
\vec{q}_{c}=-\vec{q}_{e} \tag{A3}
\end{gather*}
$$

When squared, the last equation leads to the following equality

$$
\begin{equation*}
q_{c}^{2}=q_{e}^{2}=E_{e}^{2}-m_{e}^{2} \tag{A4}
\end{equation*}
$$

From Eq. (A4) and the third equality of Eq. (A1), we obtain

$$
\begin{equation*}
E_{c}^{2}-M_{c}^{2}=E_{e}^{2}-m_{e}^{2} \tag{A5}
\end{equation*}
$$

With its second and third terms moved to the other side of the equality, Eq. (A5) may be divided by Eq. (A2) to give

$$
\begin{equation*}
E_{c}-E_{e}=\frac{1}{m_{n}}\left(M_{c}^{2}-m_{e}^{2}\right) \tag{A6}
\end{equation*}
$$

As a system of coupled linear equations, Eqs. (A2) and (A6) may be solved to give

$$
\begin{align*}
& E_{c}=\frac{1}{2 m_{n}}\left(m_{n}^{2}-m_{e}^{2}+M_{c}^{2}\right) \tag{A7}\\
& E_{e}=\frac{1}{2 m_{n}}\left(m_{n}^{2}+m_{e}^{2}-M_{c}^{2}\right) \tag{A8}
\end{align*}
$$

Using Eq. (A8), the last equality in Eq. (A4) may be rewritten as

$$
\begin{align*}
q_{e} & =\frac{1}{2 m_{n}} \sqrt{\left(m_{n}^{2}+m_{e}^{2}-M_{c}^{2}\right)^{2}-\left(2 m_{n} m_{e}\right)^{2}} \\
& =\frac{1}{2 m_{n}} \sqrt{\left(m_{n}+m_{e}+M_{c}\right)\left(m_{n}+m_{e}-M_{c}\right)\left(m_{n}-m_{e}+M_{c}\right)\left(m_{n}-m_{e}-M_{c}\right)} \tag{A9}
\end{align*}
$$

Eq. (A8) shows that a maximum of E_{e} corresponds to a minimum of M_{c}^{2}. Now the rest mass M_{c} is the total energy of the proton and anti-neutrino pair in their center of mass (or momentum) frame so that it achieves the minimum

$$
\begin{equation*}
M=m_{p}+m_{v} \tag{A10}
\end{equation*}
$$

when the proton and the anti-neutrino are both at rest in the center of mass frame. Hence, from Eqs. (A8) and (A10), the maximum energy of the electron $E=c^{2} E_{e}$ is

$$
\begin{equation*}
E_{\max }=\frac{c^{2}}{2 m_{n}}\left[m_{n}^{2}+m_{e}^{2}-\left(m_{p}+m_{v}\right)^{2}\right] \approx 1.292569 \mathrm{MeV} \approx 1.29 \mathrm{MeV} \tag{A11}
\end{equation*}
$$

When Eq. (A10) holds, the proton and the anti-neutrino move with the same velocity v_{m} of the center of mass and we have

$$
\begin{equation*}
\frac{v_{m}}{c}=\left.\left(\frac{q_{v}}{E_{v}}\right)\right|_{E=E_{\max }}=\left.\left(\frac{q_{p}}{E_{p}}\right)\right|_{E=E_{\max }}=\left.\left(\frac{q_{c}}{E_{c}}\right)\right|_{E=E_{\max }}=\left.\left(\frac{q_{e}}{E_{c}}\right)\right|_{M_{c}=m_{p}+m_{v}} \tag{A12}
\end{equation*}
$$

where the last equality follows from Eq. (A3). By Eqs. (A7) and (A9), the last expression in Eq. (A12) may be used to obtain the speed of the anti-neutrino when $E=E_{\max }$. Thus, with $M=m_{p}+m_{v}$, we have

$$
\begin{align*}
\frac{v_{m}}{c} & =\frac{\sqrt{\left(m_{n}+m_{e}+M\right)\left(m_{n}+m_{e}-M\right)\left(m_{n}-m_{e}+M\right)\left(m_{n}-m_{e}-M\right)}}{m_{n}^{2}-m_{e}^{2}+M^{2}} \tag{A13}\\
& \approx 0.00126538 \approx 0.00127
\end{align*}
$$

[Alternative Solution]

Assume that, in the rest frame of the neutron, the electron comes out with momentum $c \vec{q}_{e}$ and energy $c^{2} E_{e}$, the proton with $c \vec{q}_{p}$ and $c^{2} E_{p}$, and the anti-neutrino with $c \vec{q}_{v}$ and $c^{2} E_{v}$. With the magnitude of vector \vec{q}_{α} denoted by the symbol q_{α}, we have

$$
\begin{equation*}
E_{p}^{2}=m_{p}^{2}+q_{p}^{2}, \quad E_{v}^{2}=m_{v}^{2}+q_{v}^{2}, \quad E_{e}^{2}=m_{e}^{2}+q_{e}^{2} \tag{1A}
\end{equation*}
$$

Conservation of energy and momentum in the neutron decay leads to

$$
\begin{gather*}
E_{p}+E_{v}=m_{n}-E_{e} \tag{2~A}\\
\vec{q}_{p}+\vec{q}_{v}=-\vec{q}_{e} \tag{3~A}
\end{gather*}
$$

When squared, the last two equations lead to

$$
\begin{align*}
& E_{p}^{2}+E_{v}^{2}+2 E_{p} E_{v}=\left(m_{n}-E_{e}\right)^{2} \tag{4~A}\\
& q_{p}^{2}+q_{v}^{2}+2 \vec{q}_{p} \cdot \vec{q}_{v}=q_{e}^{2}=E_{e}^{2}-m_{e}^{2} \tag{5~A}
\end{align*}
$$

Subtracting Eq. (5A) from Eq. (4A) and making use of Eq. (1A) then gives

$$
\begin{equation*}
m_{p}^{2}+m_{v}^{2}+2\left(E_{p} E_{v}-\vec{q}_{p} \cdot \vec{q}_{v}\right)=m_{n}^{2}+m_{e}^{2}-2 m_{n} E_{e} \tag{6~A}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
2 m_{n} E_{e}=m_{n}^{2}+m_{e}^{2}-m_{p}^{2}-m_{v}^{2}-2\left(E_{p} E_{v}-\vec{q}_{p} \cdot \vec{q}_{v}\right) \tag{7A}
\end{equation*}
$$

If θ is the angle between \vec{q}_{p} and \vec{q}_{v}, we have $\vec{q}_{p} \cdot \vec{q}_{v}=q_{p} q_{v} \cos \theta \leq q_{p} q_{v}$ so that Eq. (7A) leads to the relation

$$
\begin{equation*}
2 m_{n} E_{e} \leq m_{n}^{2}+m_{e}^{2}-m_{p}^{2}-m_{v}^{2}-2\left(E_{p} E_{v}-q_{p} q_{v}\right) \tag{8A}
\end{equation*}
$$

Note that the equality in Eq. (8A) holds only if $\theta=0$, i.e., the energy of the electron $c^{2} E_{e}$ takes on its maximum value only when the anti-neutrino and the proton move in the same direction.

Let the speeds of the proton and the anti-neutrino in the rest frame of the neutron be $c \beta_{p}$ and $c \beta_{v}$, respectively. We then have $q_{p}=\beta_{p} E_{p}$ and $q_{v}=\beta_{v} E_{v}$. As shown in Fig. A1, we introduce the angle $\phi_{v}\left(0 \leq \phi_{v}<\pi / 2\right)$ for the antineutrino by

$$
\begin{equation*}
q_{v}=m_{v} \tan \phi_{v}, \quad E_{v}=\sqrt{m_{v}^{2}+q_{v}^{2}}=m_{v} \sec \phi_{v}, \quad \beta_{v}=q_{v} / E_{v}=\sin \phi_{v} \tag{9A}
\end{equation*}
$$

Figure A1

Similarly, for the proton, we write, with $0 \leq \phi_{p}<\pi / 2$,

$$
\begin{equation*}
q_{p}=m_{p} \tan \phi_{p}, \quad E_{p}=\sqrt{m_{p}^{2}+q_{p}^{2}}=m_{p} \sec \phi_{p}, \quad \beta_{p}=q_{p} / E_{p}=\sin \phi_{p} \tag{10A}
\end{equation*}
$$

Eq. (8A) may then be expressed as

$$
\begin{equation*}
2 m_{n} E_{e} \leq m_{n}^{2}+m_{e}^{2}-m_{p}^{2}-m_{v}^{2}-2 m_{p} m_{v}\left(\frac{1-\sin \phi_{p} \sin \phi_{v}}{\cos \phi_{p} \cos \phi_{v}}\right) \tag{11A}
\end{equation*}
$$

The factor in parentheses at the end of the last equation may be expressed as

$$
\begin{equation*}
\frac{1-\sin \phi_{p} \sin \phi_{v}}{\cos \phi_{p} \cos \phi_{v}}=\frac{1-\sin \phi_{p} \sin \phi_{v}-\cos \phi_{p} \cos \phi_{v}}{\cos \phi_{p} \cos \phi_{v}}+1=\frac{1-\cos \left(\phi_{p}-\phi_{v}\right)}{\cos \phi_{p} \cos \phi_{v}}+1 \geq 1 \tag{12A}
\end{equation*}
$$

and clearly assumes its minimum possible value of 1 when $\phi_{p}=\phi_{v}$, i.e., when the anti-neutrino and the proton move with the same velocity so that $\beta_{p}=\beta_{v}$. Thus, it follows from Eq. (11A) that the maximum value of E_{e} is

$$
\begin{align*}
\left(E_{e}\right)_{\max } & =\frac{1}{2 m_{n}}\left(m_{n}^{2}+m_{e}^{2}-m_{p}^{2}-m_{v}^{2}-2 m_{p} m_{v}\right) \tag{13~A}\\
& =\frac{1}{2 m_{n}}\left[m_{n}^{2}+m_{e}^{2}-\left(m_{p}+m_{v}\right)^{2}\right]
\end{align*}
$$

[^0]and the maximum energy of the electron $E=c^{2} E_{e}$ is
\[

$$
\begin{equation*}
E_{\max }=c^{2}\left(E_{e}\right)_{\max } \approx 1.292569 \mathrm{MeV} \approx 1.29 \mathrm{MeV} \tag{14~A}
\end{equation*}
$$

\]

When the anti-neutrino and the proton move with the same velocity, we have, from Eqs. (9A), (10A), (2A) ,(3A), and (1A), the result

$$
\begin{equation*}
\beta_{v}=\beta_{p}=\frac{q_{p}}{E_{p}}=\frac{q_{v}}{E_{v}}=\frac{q_{p}+q_{v}}{E_{p}+E_{v}}=\frac{q_{e}}{m_{n}-E_{e}}=\frac{\sqrt{E_{e}^{2}-m_{e}^{2}}}{m_{n}-E_{e}} \tag{15A}
\end{equation*}
$$

Substituting the result of Eq. (13A) into the last equation, the speed v_{m} of the anti-neutrino when the electron attains its maximum value $E_{\max }$ is, with $M=m_{p}+m_{v}$, given by

$$
\begin{align*}
\frac{v_{m}}{c} & =\left(\beta_{v}\right)_{\max E_{e}}=\frac{\sqrt{\left(E_{e}\right)_{\max }^{2}-m_{e}^{2}}}{m_{n}-\left(E_{e}\right)_{\max }}=\frac{\sqrt{\left(m_{n}^{2}+m_{e}^{2}-M^{2}\right)^{2}-4 m_{n}^{2} m_{e}^{2}}}{2 m_{n}^{2}-\left(m_{n}^{2}+m_{e}^{2}-M^{2}\right)} \\
& =\frac{\sqrt{\left(m_{n}+m_{e}+M\right)\left(m_{n}+m_{e}-M\right)\left(m_{n}-m_{e}+M\right)\left(m_{n}-m_{e}-M\right)}}{m_{n}^{2}-m_{e}^{2}+M^{2}} \tag{16~A}
\end{align*}
$$

$$
\approx 0.00126538 \approx 0.00127
$$

Part B

Light Levitation

(b) Refer to Fig. B1. Refraction of light at the spherical surface obeys Snell's law and leads to

$$
\begin{equation*}
n \sin \theta_{i}=\sin \theta_{t} \tag{B1}
\end{equation*}
$$

Neglecting terms of the order $(\delta / R)^{3}$ or higher in sine functions, Eq. (B1) becomes

$$
\begin{equation*}
n \theta_{i} \approx \theta_{t} \tag{B2}
\end{equation*}
$$

For the triangle $\triangle F A C$ in Fig. B1, we have

$$
\begin{equation*}
\beta=\theta_{t}-\theta_{i} \approx n \theta_{i}-\theta_{i}=(n-1) \theta_{i} \tag{B3}
\end{equation*}
$$

Let f_{0} be the frequency of the incident light. If n_{p} is the number of photons incident on the plane surface per unit area per unit time, then the total number of photons incident on the plane surface per unit time is $n_{p} \pi \delta^{2}$. The total power P of photons incident on the plane surface is $\left(n_{p} \pi \delta^{2}\right)\left(h f_{0}\right)$, with h being Planck's constant. Hence,

$$
\begin{equation*}
n_{p}=\frac{P}{\pi \delta^{2} h f_{0}} \tag{B4}
\end{equation*}
$$

The number of photons incident on an annular disk of inner radius r and outer radius $r+d r$ on the plane surface per unit time is $n_{p}(2 \pi r d r)$, where

Fig. B1
$r=R \tan \theta_{i} \approx R \theta_{i}$. Therefore,

$$
\begin{equation*}
n_{p}(2 \pi r d r) \approx n_{p}\left(2 \pi R^{2}\right) \theta_{i} d \theta_{i} \tag{B5}
\end{equation*}
$$

The z-component of the momentum carried away per unit time by these photons when refracted at the spherical surface is

$$
\begin{align*}
d F_{z} & =n_{p} \frac{h f_{o}}{c}(2 \pi r d r) \cos \beta \approx n_{p} \frac{h f_{0}}{c}\left(2 \pi R^{2}\right)\left(1-\frac{\beta^{2}}{2}\right) \theta_{i} d \theta_{i} \\
& \approx n_{p} \frac{h f_{0}}{c}\left(2 \pi R^{2}\right)\left[\theta_{i}-\frac{(n-1)^{2}}{2} \theta_{i}^{3}\right] d \theta_{i} \tag{B6}
\end{align*}
$$

so that the z-component of the total momentum carried away per unit time is

$$
\begin{align*}
F_{z} & =2 \pi R^{2} n_{p}\left(\frac{h f_{0}}{c}\right) \int_{0}^{\theta_{i m}}\left[\theta_{i}-\frac{(n-1)^{2}}{2} \theta_{i}^{3}\right] d \theta_{i} \tag{B7}\\
& =\pi R^{2} n_{p}\left(\frac{h f_{0}}{c}\right) \theta_{i m}^{2}\left[1-\frac{(n-1)^{2}}{4} \theta_{i m}^{2}\right]
\end{align*}
$$

where $\tan \theta_{\text {im }}=\frac{\delta}{R} \approx \theta_{\text {im }}$. Therefore, by the result of Eq. (B5), we have

$$
\begin{equation*}
F_{z}=\frac{\pi R^{2} P}{\pi \delta^{2} h f_{0}}\left(\frac{h f_{0}}{c}\right) \frac{\delta^{2}}{R^{2}}\left[1-\frac{(n-1)^{2} \delta^{2}}{4 R^{2}}\right]=\frac{P}{c}\left[1-\frac{(n-1)^{2} \delta^{2}}{4 R^{2}}\right] \tag{B8}
\end{equation*}
$$

The force of optical levitation is equal to the sum of the z-components of the forces exerted by the incident and refracted lights on the glass hemisphere and is given by

$$
\begin{equation*}
\frac{P}{c}+\left(-F_{z}\right)=\frac{P}{c}-\frac{P}{c}\left[1-\frac{(n-1)^{2} \delta^{2}}{4 R^{2}}\right]=\frac{(n-1)^{2} \delta^{2}}{4 R^{2}} \frac{P}{c} \tag{B9}
\end{equation*}
$$

Equating this to the weight $m g$ of the glass hemisphere, we obtain the minimum laser power required to levitate the hemisphere as

$$
\begin{equation*}
P=\frac{4 m g c R^{2}}{(n-1)^{2} \delta^{2}} \tag{B10}
\end{equation*}
$$

[^0]: ${ }^{1}$ An equation marked with an asterisk contains answer to the problem.

